Files
buun-stack/kserve/README.md
2025-11-10 21:31:35 +09:00

301 lines
8.1 KiB
Markdown

# KServe
KServe is a standard Model Inference Platform on Kubernetes for Machine Learning and Generative AI. It provides a standardized way to deploy, serve, and manage ML models across different frameworks.
## Features
- **Multi-Framework Support**: TensorFlow, PyTorch, scikit-learn, XGBoost, Hugging Face, Triton, and more
- **Deployment Modes**:
- **RawDeployment (Standard)**: Uses native Kubernetes Deployments without Knative
- **Serverless (Knative)**: Auto-scaling with scale-to-zero capability
- **Model Storage**: Support for S3, GCS, Azure Blob, PVC, and more
- **Inference Protocols**: REST and gRPC
- **Advanced Features**: Canary deployments, traffic splitting, explainability, outlier detection
## Prerequisites
- Kubernetes cluster (installed via `just k8s::install`)
- Longhorn storage (installed via `just longhorn::install`)
- **cert-manager** (required, installed via `just cert-manager::install`)
- MinIO (optional, for S3-compatible model storage via `just minio::install`)
- Prometheus (optional, for monitoring via `just prometheus::install`)
## Installation
### Basic Installation
```bash
# Install cert-manager (required)
just cert-manager::install
# Install KServe with default settings (RawDeployment mode)
just kserve::install
```
During installation, you will be prompted for:
- **Prometheus Monitoring**: Whether to enable ServiceMonitor (if Prometheus is installed)
The domain for inference endpoints is configured via the `KSERVE_DOMAIN` environment variable (default: `cluster.local`).
### Environment Variables
Key environment variables (set via `.env.local` or environment):
```bash
KSERVE_NAMESPACE=kserve # Namespace for KServe
KSERVE_CHART_VERSION=v0.15.0 # KServe Helm chart version
KSERVE_DEPLOYMENT_MODE=RawDeployment # Deployment mode (RawDeployment or Knative)
KSERVE_DOMAIN=cluster.local # Base domain for inference endpoints
MONITORING_ENABLED=true # Enable Prometheus monitoring
MINIO_NAMESPACE=minio # MinIO namespace (if using MinIO)
```
### Domain Configuration
KServe uses the `KSERVE_DOMAIN` to construct URLs for inference endpoints.
**Internal Access Only (Default):**
```bash
KSERVE_DOMAIN=cluster.local
```
- InferenceServices are accessible only within the cluster
- URLs: `http://<service-name>.<namespace>.svc.cluster.local`
- No external Ingress configuration needed
- Recommended for development and testing
**External Access:**
```bash
KSERVE_DOMAIN=example.com
```
- InferenceServices are accessible from outside the cluster
- URLs: `https://<service-name>.<namespace>.example.com`
- Requires Traefik Ingress configuration
- DNS records must point to your cluster
- Recommended for production deployments
## Usage
### Check Status
```bash
# View status of KServe components
just kserve::status
# View controller logs
just kserve::logs
```
### Deploy a Model
Create an `InferenceService` resource:
```yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
name: sklearn-iris
namespace: default
spec:
predictor:
sklearn:
storageUri: s3://models/sklearn/iris
```
Apply the resource:
```bash
kubectl apply -f inferenceservice.yaml
```
### Access Inference Endpoint
```bash
# Get inference service URL
kubectl get inferenceservice sklearn-iris
```
**For cluster.local (internal access):**
```bash
# From within the cluster
curl -X POST http://sklearn-iris.default.svc.cluster.local/v1/models/sklearn-iris:predict \
-H "Content-Type: application/json" \
-d '{"instances": [[6.8, 2.8, 4.8, 1.4]]}'
```
**For external domain:**
```bash
# From anywhere (requires DNS and Ingress configuration)
curl -X POST https://sklearn-iris.default.example.com/v1/models/sklearn-iris:predict \
-H "Content-Type: application/json" \
-d '{"instances": [[6.8, 2.8, 4.8, 1.4]]}'
```
## Storage Configuration
### Using MinIO (S3-compatible)
If MinIO is installed, KServe will automatically configure S3 credentials:
```bash
# Storage secret is created automatically during installation
kubectl get secret kserve-s3-credentials -n kserve
```
**External Secrets Integration:**
- When External Secrets Operator is available:
- Credentials are retrieved directly from Vault at `minio/admin`
- ExternalSecret resource syncs credentials to Kubernetes Secret
- Secret includes KServe-specific annotations for S3 endpoint configuration
- No duplicate storage needed - references existing MinIO credentials
- When External Secrets Operator is not available:
- Credentials are retrieved from MinIO Secret
- Kubernetes Secret is created directly with annotations
- Credentials are also backed up to Vault at `kserve/storage` if available
Models can be stored in MinIO buckets:
```bash
# Create a bucket for models
just minio::create-bucket models
# Upload model files to MinIO
# Then reference in InferenceService: s3://models/path/to/model
```
### Using Other Storage
KServe supports various storage backends:
- **S3**: AWS S3 or compatible services
- **GCS**: Google Cloud Storage
- **Azure**: Azure Blob Storage
- **PVC**: Kubernetes Persistent Volume Claims
- **HTTP/HTTPS**: Direct URLs
## Supported Frameworks
The following serving runtimes are enabled by default:
- **scikit-learn**: sklearn models
- **XGBoost**: XGBoost models
- **MLServer**: Multi-framework server (sklearn, XGBoost, etc.)
- **Triton**: NVIDIA Triton Inference Server
- **TensorFlow**: TensorFlow models
- **PyTorch**: PyTorch models via TorchServe
- **Hugging Face**: Transformer models
## Advanced Configuration
### Custom Serving Runtimes
You can create custom `ClusterServingRuntime` or `ServingRuntime` resources for specialized model servers.
### Prometheus Monitoring
When monitoring is enabled, KServe controller metrics are exposed and scraped by Prometheus:
```bash
# View metrics in Grafana
# Metrics include: inference request rates, latencies, error rates
```
## Deployment Modes
### RawDeployment (Standard)
- Uses standard Kubernetes Deployments, Services, and Ingress
- No Knative dependency
- Simpler setup, more control over resources
- Manual scaling configuration required
### Serverless (Knative)
- Requires Knative Serving installation
- Auto-scaling with scale-to-zero
- Advanced traffic management
- Better resource utilization for sporadic workloads
## Examples
### Iris Classification with MLflow
A complete end-to-end example demonstrating model serving with KServe:
- Train an Iris classification model in JupyterHub
- Register the model to MLflow Model Registry
- Deploy the registered model with KServe InferenceService
- Test inference using v2 protocol from JupyterHub notebooks and Kubernetes Jobs
This example demonstrates:
- Converting MLflow artifact paths to KServe storageUri
- Using MLflow format runtime (with automatic dependency installation)
- Testing with both single and batch predictions
- Using v2 Open Inference Protocol
See: [`examples/kserve-mlflow-iris`](../examples/kserve-mlflow-iris/README.md)
## Uninstallation
```bash
# Remove KServe (keeps CRDs for safety)
just kserve::uninstall
```
This will:
- Uninstall KServe resources Helm chart
- Uninstall KServe CRDs
- Delete storage secrets
- Delete namespace
**Warning**: Uninstalling will remove all InferenceService resources.
## Troubleshooting
### Check Controller Logs
```bash
just kserve::logs
```
### View InferenceService Status
```bash
kubectl get inferenceservice -A
kubectl describe inferenceservice <name> -n <namespace>
```
### Check Predictor Pods
```bash
kubectl get pods -l serving.kserve.io/inferenceservice=<name>
kubectl logs <pod-name>
```
### Storage Issues
If models fail to download:
```bash
# Check storage initializer logs
kubectl logs <pod-name> -c storage-initializer
# Verify S3 credentials
kubectl get secret kserve-s3-credentials -n kserve -o yaml
```
## References
- [KServe Documentation](https://kserve.github.io/website/)
- [KServe GitHub](https://github.com/kserve/kserve)
- [KServe Examples](https://github.com/kserve/kserve/tree/master/docs/samples)
- [Supported ML Frameworks](https://kserve.github.io/website/latest/modelserving/v1beta1/serving_runtime/)