Files
buun-stack/docs/jupyterhub.md
2025-09-08 10:51:25 +09:00

16 KiB

JupyterHub

JupyterHub provides a multi-user Jupyter notebook environment with Keycloak OIDC authentication, Vault integration for secure secrets management, and custom kernel images for data science workflows.

Installation

Install JupyterHub with interactive configuration:

just jupyterhub::install

This will prompt for:

  • JupyterHub host (FQDN)
  • NFS PV usage (if Longhorn is installed)
  • NFS server details (if NFS is enabled)
  • Vault integration setup

Prerequisites

  • Keycloak must be installed and configured
  • For NFS storage: Longhorn must be installed
  • For Vault integration: Vault must be installed and configured
  • Helm repository must be accessible

Kernel Images

Important Note

Building and using custom buun-stack images requires building the buunstack Python package first. The package wheel file will be included in the Docker image during build.

JupyterHub supports multiple kernel image profiles:

Standard Profiles

  • minimal: Basic Python environment
  • base: Python with common data science packages
  • datascience: Full data science stack (default)
  • pyspark: PySpark for big data processing
  • pytorch: PyTorch for machine learning
  • tensorflow: TensorFlow for machine learning

Buun-Stack Profiles

  • buun-stack: Comprehensive data science environment with Vault integration
  • buun-stack-cuda: CUDA-enabled version with GPU support

Profile Configuration

Enable/disable profiles using environment variables:

# Enable buun-stack profile (CPU version)
export JUPYTER_PROFILE_BUUN_STACK_ENABLED=true

# Enable buun-stack CUDA profile (GPU version)
export JUPYTER_PROFILE_BUUN_STACK_CUDA_ENABLED=true

# Disable default datascience profile
export JUPYTER_PROFILE_DATASCIENCE_ENABLED=false

Available profile variables:

  • JUPYTER_PROFILE_MINIMAL_ENABLED
  • JUPYTER_PROFILE_BASE_ENABLED
  • JUPYTER_PROFILE_DATASCIENCE_ENABLED
  • JUPYTER_PROFILE_PYSPARK_ENABLED
  • JUPYTER_PROFILE_PYTORCH_ENABLED
  • JUPYTER_PROFILE_TENSORFLOW_ENABLED
  • JUPYTER_PROFILE_BUUN_STACK_ENABLED
  • JUPYTER_PROFILE_BUUN_STACK_CUDA_ENABLED

Only JUPYTER_PROFILE_DATASCIENCE_ENABLED is true by default.

Buun-Stack Images

Buun-stack images provide comprehensive data science environments with:

  • All standard data science packages (NumPy, Pandas, Scikit-learn, etc.)
  • Deep learning frameworks (PyTorch, TensorFlow, Keras)
  • Big data tools (PySpark, Apache Arrow)
  • NLP and ML libraries (LangChain, Transformers, spaCy)
  • Database connectors and tools
  • Vault integration with buunstack Python package

Building Custom Images

Build and push buun-stack images to your registry:

# Build images (includes building the buunstack Python package)
just jupyterhub::build-kernel-images

# Push to registry
just jupyterhub::push-kernel-images

The build process:

  1. Builds the buunstack Python package wheel
  2. Copies the wheel into the Docker build context
  3. Installs the wheel in the Docker image
  4. Cleans up temporary files

⚠️ Note: Buun-stack images are comprehensive and large (~13GB). Initial image pulls and deployments take significant time due to the extensive package set.

Image Configuration

Configure image settings in .env.local:

# Image registry
IMAGE_REGISTRY=localhost:30500

# Image tag (current default)
JUPYTER_PYTHON_KERNEL_TAG=python-3.12-28

Vault Integration

Overview

Vault integration enables secure secrets management directly from Jupyter notebooks using user-specific Vault tokens. Each user receives their own isolated Vault token during notebook spawn, ensuring complete separation of secrets between users. Users can store and retrieve API keys, database credentials, and other sensitive data securely with automatic token renewal.

Prerequisites

Vault integration requires:

  • Vault server installed and configured
  • Keycloak OIDC authentication configured
  • Buun-stack kernel images (standard images don't include Vault integration)

Setup

Vault integration is configured during JupyterHub installation. You have two options:

just jupyterhub::install
# Answer "yes" when prompted about Vault integration

Option 2: Pre-configured setup

export JUPYTERHUB_VAULT_INTEGRATION_ENABLED=true
just jupyterhub::install

Note: The just jupyterhub::setup-vault-jwt-auth command is called automatically during installation if Vault integration is enabled. This command currently serves as a placeholder for future JWT-based authentication enhancements.

Usage in Notebooks

With Vault integration enabled, use the buunstack package in notebooks:

from buunstack import SecretStore

# Initialize (uses pre-acquired user-specific token)
secrets = SecretStore()

# Store secrets
secrets.put('api-keys',
    openai='sk-...',
    github='ghp_...',
    database_url='postgresql://...')

# Retrieve secrets
api_keys = secrets.get('api-keys')
openai_key = secrets.get('api-keys', field='openai')

# List all secrets
secret_names = secrets.list()

# Delete secrets or specific fields
secrets.delete('old-api-key')  # Delete entire secret
secrets.delete('api-keys', field='github')  # Delete only github field

Security Features

  • User isolation: Each user receives a unique Vault token with access only to their own secrets
  • Automatic token renewal: Tokens can be renewed to extend session lifetime
  • Audit trail: All secret access is logged in Vault
  • Individual policies: Each user has their own Vault policy restricting access to their namespace

Storage Options

Default Storage

Uses Kubernetes PersistentVolumes for user home directories.

NFS Storage

For shared storage across nodes, configure NFS:

export JUPYTERHUB_NFS_PV_ENABLED=true
export JUPYTER_NFS_IP=192.168.10.1
export JUPYTER_NFS_PATH=/volume1/drive1/jupyter

NFS storage requires:

  • Longhorn storage system installed
  • NFS server accessible from cluster nodes
  • Proper NFS export permissions configured

Configuration

Environment Variables

Key configuration variables:

# Basic settings
JUPYTERHUB_NAMESPACE=jupyter
JUPYTERHUB_CHART_VERSION=4.2.0
JUPYTERHUB_OIDC_CLIENT_ID=jupyterhub

# Keycloak integration
KEYCLOAK_REALM=buunstack

# Storage
JUPYTERHUB_NFS_PV_ENABLED=false

# Vault integration
JUPYTERHUB_VAULT_INTEGRATION_ENABLED=false
VAULT_ADDR=http://vault.vault.svc:8200

# Image settings
JUPYTER_PYTHON_KERNEL_TAG=python-3.12-28
IMAGE_REGISTRY=localhost:30500

# Vault token TTL settings
JUPYTERHUB_VAULT_TOKEN_TTL=720h      # Admin token: 30 days (effective limit)
JUPYTERHUB_VAULT_TOKEN_MAX_TTL=8760h # Admin token: 1 year (currently unused - no auto-renewal)
NOTEBOOK_VAULT_TOKEN_TTL=24h         # User token: 1 day (auto-renewed)
NOTEBOOK_VAULT_TOKEN_MAX_TTL=168h    # User token: 7 days (max renewal limit)

# Logging
JUPYTER_BUUNSTACK_LOG_LEVEL=warning # Options: debug, info, warning, error

Advanced Configuration

Customize JupyterHub behavior by editing jupyterhub-values.gomplate.yaml template before installation.

Management

Uninstall

just jupyterhub::uninstall

Update

Upgrade to newer versions:

# Update image tag in .env.local
export JUPYTER_PYTHON_KERNEL_TAG=python-3.12-29

# Rebuild and push images
just jupyterhub::build-kernel-images
just jupyterhub::push-kernel-images

# Upgrade JupyterHub deployment
just jupyterhub::install

Troubleshooting

Image Pull Issues

Buun-stack images are large and may timeout:

# Check pod status
kubectl get pods -n jupyter

# Check image pull progress
kubectl describe pod <pod-name> -n jupyter

# Increase timeout if needed
helm upgrade jupyterhub jupyterhub/jupyterhub \
  --timeout=30m -f jupyterhub-values.yaml

Vault Integration Issues

Check Vault connectivity and authentication:

# In a notebook
import os
print("Vault Address:", os.getenv('VAULT_ADDR'))
print("JWT Token:", bool(os.getenv('NOTEBOOK_VAULT_JWT')))
print("Vault Token:", bool(os.getenv('NOTEBOOK_VAULT_TOKEN')))

# Test SecretStore
from buunstack import SecretStore
secrets = SecretStore()
status = secrets.get_status()
print(status)

Authentication Issues

Verify Keycloak client configuration:

# Check client exists
just keycloak::get-client buunstack jupyterhub

# Check redirect URIs
just keycloak::update-client buunstack jupyterhub \
  "https://your-jupyter-host/hub/oauth_callback"

Technical Implementation Details

Helm Chart Version

JupyterHub uses the official Zero to JupyterHub (Z2JH) Helm chart:

  • Chart: jupyterhub/jupyterhub
  • Version: 4.2.0 (configurable via JUPYTERHUB_CHART_VERSION)
  • Documentation: https://z2jh.jupyter.org/

User-Specific Vault Token System

The buunstack SecretStore uses pre-created user-specific Vault tokens that are generated during notebook spawn, ensuring complete user isolation and secure access to individual secret namespaces.

Architecture Overview

┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   JupyterHub    │    │     Notebook     │    │      Vault      │
│                 │    │                  │    │                 │
│  ┌───────────┐  │    │  ┌────────────┐  │    │  ┌───────────┐  │
│  │Pre-spawn  │  │───►│  │SecretStore │  ├───►│  │User Token │  │
│  │   Hook    │  │    │  │            │  │    │  │  + Policy │  │
│  └───────────┘  │    │  └────────────┘  │    │  └───────────┘  │
└─────────────────┘    └──────────────────┘    └─────────────────┘

Key Components:

  • JupyterHub Admin Token: Created with admin policy, stored at jupyterhub/vault-token, available as JUPYTERHUB_VAULT_TOKEN environment variable
  • User-Specific Tokens: Created dynamically during notebook spawn, available as NOTEBOOK_VAULT_TOKEN environment variable
  • User Policies: Restrict access to secret/data/jupyter/users/{username}/*

Token Lifecycle

  1. Pre-spawn Hook Setup

    • JupyterHub uses admin Vault token to access Vault API
    • Creates user-specific Vault policy with restricted path access
    • Generates new user-specific Vault token with the created policy
    • Passes user token to notebook environment via NOTEBOOK_VAULT_TOKEN
  2. SecretStore Initialization

    • Reads user-specific token from environment variable:
      • NOTEBOOK_VAULT_TOKEN (User-specific Vault token)
    • Uses token for all Vault operations within user's namespace
  3. Token Validation

    • Before operations, checks token validity using lookup_self
    • Verifies token TTL and renewable status
  4. Automatic Token Renewal

    • If token TTL is low (< 10 minutes) and renewable, renews token
    • Uses renew_self capability granted by user policy
    • Logs renewal success for monitoring

Code Flow

def _ensure_authenticated(self):
    # Check if current Vault token is valid
    try:
        if self.client.is_authenticated():
            # Check if token needs renewal
            token_info = self.client.auth.token.lookup_self()
            ttl = token_info.get("data", {}).get("ttl", 0)
            renewable = token_info.get("data", {}).get("renewable", False)

            # Renew if TTL < 10 minutes and renewable
            if renewable and ttl > 0 and ttl < 600:
                self.client.auth.token.renew_self()
                logger.info("✅ Vault token renewed successfully")
            return
    except Exception:
        pass

    # Token expired and cannot be refreshed
    raise Exception("User-specific Vault token expired and cannot be refreshed. Please restart your notebook server.")

Key Design Decisions

1. User-Specific Token Creation
  • Each user receives a unique Vault token during notebook spawn
  • Individual policies ensure complete user isolation
  • Admin token used only during pre-spawn hook for token creation
2. Policy-Based Access Control
  • User policies restrict access to secret/data/jupyter/users/{username}/*
  • Each user can only access their own secret namespace
  • Token management capabilities (lookup_self, renew_self) included
3. Singleton Pattern
  • Single SecretStore instance per notebook session
  • Prevents multiple simultaneous authentications
  • Maintains consistent token state
4. Pre-created User Tokens
  • Tokens are created during notebook spawn via pre-spawn hook
  • Reduces initialization overhead in notebooks
  • Provides immediate access to user's secret namespace

Error Handling

# Primary error scenarios and responses:

1. User token unavailable
    Token stored in NOTEBOOK_VAULT_TOKEN env var
    Prompt to restart notebook server if missing

2. Vault token expired
    Automatic renewal using renew_self if renewable
    Restart notebook server required if not renewable

3. Vault authentication failure
    Log detailed error information
    Check user policy and token configuration

4. Network connectivity issues
    Built-in retry in hvac client
    Provide actionable error messages

Configuration

Environment variables passed to notebooks:

# JupyterHub pre_spawn_hook sets:
spawner.environment:
  # Core services
  POSTGRES_HOST: 'postgres-cluster-rw.postgres'
  POSTGRES_PORT: '5432'
  JUPYTERHUB_API_URL: 'http://hub:8081/hub/api'
  BUUNSTACK_LOG_LEVEL: 'info'  # or 'debug' for detailed logging

  # Vault integration
  NOTEBOOK_VAULT_TOKEN: '<User-specific Vault token>'
  VAULT_ADDR: 'http://vault.vault.svc:8200'

Monitoring and Debugging

Enable detailed logging for troubleshooting:

# In notebook
import os
os.environ['BUUNSTACK_LOG_LEVEL'] = 'DEBUG'

# Restart kernel and check logs
from buunstack import SecretStore
secrets = SecretStore()

# Check authentication status
status = secrets.get_status()
print("Username:", status['username'])
print("Vault Address:", status['vault_addr'])
print("Authentication Method:", status['authentication_method'])
print("Vault Authenticated:", status['vault_authenticated'])

Performance Characteristics

  • Token renewal overhead: ~10-50ms for renew_self call
  • Memory usage: Minimal (single token stored as string)
  • Network traffic: Only during token renewal (when TTL < 10 minutes)
  • Vault impact: Standard token operations (lookup_self, renew_self)

Performance Considerations

  • Image Size: Buun-stack images are ~13GB, plan storage accordingly
  • Pull Time: Initial pulls take 5-15 minutes depending on network
  • Resource Usage: Data science workloads require adequate CPU/memory
  • Storage: NFS provides better performance for shared datasets
  • Token Renewal: User token renewal adds minimal overhead

For production deployments, consider:

  • Pre-pulling images to all nodes
  • Using faster storage backends
  • Configuring resource limits per user
  • Setting up monitoring and alerts
  • Monitoring Vault token expiration and renewal patterns

Known Limitations

  1. Admin Token Refresh: JupyterHub's admin Vault token (JUPYTERHUB_VAULT_TOKEN) does not auto-refresh. You must redeploy JupyterHub before the token expires (default TTL: 720h/30 days). The JUPYTERHUB_VAULT_TOKEN_MAX_TTL setting is currently not utilized since automatic renewal is not implemented. Monitor the token expiration and schedule redeployments accordingly.

  2. Cull Settings: Server idle timeout is set to 2 hours by default. Adjust cull.timeout and cull.every in the Helm values for different requirements.

  3. NFS Storage: When using NFS storage, ensure proper permissions are set on the NFS server. The default JUPYTER_FSGID is 100.