apiVersion: serving.kserve.io/v1beta1 kind: InferenceService metadata: name: iris-classifier namespace: kserve annotations: serving.kserve.io/secretName: kserve-s3-credentials spec: predictor: model: modelFormat: name: mlflow version: "2" storageUri: s3://mlflow/EXPERIMENT_ID/models/MODEL_ID/artifacts resources: requests: cpu: "100m" memory: "512Mi" limits: cpu: "1000m" memory: "1Gi" --- # Alternative: Using SKLearn Server (does not install requirements.txt) # apiVersion: serving.kserve.io/v1beta1 # kind: InferenceService # metadata: # name: iris-classifier # namespace: kserve # annotations: # serving.kserve.io/secretName: kserve-s3-credentials # spec: # predictor: # model: # modelFormat: # name: sklearn # version: "1" # storageUri: s3://mlflow/EXPERIMENT_ID/models/MODEL_ID/artifacts # resources: # requests: # cpu: "100m" # memory: "256Mi" # limits: # cpu: "500m" # memory: "512Mi"