docs: write about KServe
This commit is contained in:
24
README.md
24
README.md
@@ -42,6 +42,7 @@ A remotely accessible Kubernetes home lab with OIDC authentication. Build a mode
|
|||||||
|
|
||||||
- **[JupyterHub](https://jupyter.org/hub)**: Interactive computing with collaborative notebooks
|
- **[JupyterHub](https://jupyter.org/hub)**: Interactive computing with collaborative notebooks
|
||||||
- **[MLflow](https://mlflow.org/)**: Machine learning lifecycle management with experiment tracking and model registry
|
- **[MLflow](https://mlflow.org/)**: Machine learning lifecycle management with experiment tracking and model registry
|
||||||
|
- **[KServe](https://kserve.github.io/)**: Model serving platform for deploying ML models on Kubernetes
|
||||||
- **[Trino](https://trino.io/)**: Distributed SQL query engine for querying multiple data sources
|
- **[Trino](https://trino.io/)**: Distributed SQL query engine for querying multiple data sources
|
||||||
- **[Querybook](https://www.querybook.org/)**: Big data querying UI with notebook interface
|
- **[Querybook](https://www.querybook.org/)**: Big data querying UI with notebook interface
|
||||||
- **[ClickHouse](https://clickhouse.com/)**: High-performance columnar analytics database
|
- **[ClickHouse](https://clickhouse.com/)**: High-performance columnar analytics database
|
||||||
@@ -183,6 +184,17 @@ Machine learning lifecycle management platform:
|
|||||||
|
|
||||||
[📖 See MLflow Documentation](./mlflow/README.md)
|
[📖 See MLflow Documentation](./mlflow/README.md)
|
||||||
|
|
||||||
|
### KServe
|
||||||
|
|
||||||
|
Model serving platform for deploying ML models on Kubernetes:
|
||||||
|
|
||||||
|
- **Multi-Framework Support**: TensorFlow, PyTorch, scikit-learn, XGBoost, MLflow, and more
|
||||||
|
- **MLflow Integration**: Deploy models directly from MLflow Model Registry
|
||||||
|
- **Inference Protocols**: REST and gRPC with v2 Open Inference Protocol
|
||||||
|
- **RawDeployment Mode**: Uses native Kubernetes Deployments without Knative dependency
|
||||||
|
|
||||||
|
[📖 See KServe Documentation](./kserve/README.md)
|
||||||
|
|
||||||
### Apache Superset
|
### Apache Superset
|
||||||
|
|
||||||
Modern business intelligence platform:
|
Modern business intelligence platform:
|
||||||
@@ -450,6 +462,18 @@ The `custom.just` file is automatically imported by the main Justfile if it exis
|
|||||||
|
|
||||||
The following demo projects showcase end-to-end data workflows using buun-stack:
|
The following demo projects showcase end-to-end data workflows using buun-stack:
|
||||||
|
|
||||||
|
### ML Model Serving with MLflow and KServe
|
||||||
|
|
||||||
|
[**examples/kserve-mlflow-iris**](./examples/kserve-mlflow-iris/README.md)
|
||||||
|
|
||||||
|
End-to-end machine learning workflow demonstrating JupyterHub, MLflow, and KServe integration:
|
||||||
|
|
||||||
|
- **JupyterHub** for model training and testing
|
||||||
|
- **MLflow** for experiment tracking and model registry
|
||||||
|
- **KServe** for model deployment and inference
|
||||||
|
|
||||||
|
Key technologies: MLflow, KServe, MinIO, JupyterHub
|
||||||
|
|
||||||
### Salesforce to Iceberg REST Catalog
|
### Salesforce to Iceberg REST Catalog
|
||||||
|
|
||||||
[**dlt-salesforce-iceberg-rest-demo**](https://github.com/buun-ch/dlt-salesforce-iceberg-rest-demo)
|
[**dlt-salesforce-iceberg-rest-demo**](https://github.com/buun-ch/dlt-salesforce-iceberg-rest-demo)
|
||||||
|
|||||||
Reference in New Issue
Block a user