docs: write about KServe
This commit is contained in:
24
README.md
24
README.md
@@ -42,6 +42,7 @@ A remotely accessible Kubernetes home lab with OIDC authentication. Build a mode
|
||||
|
||||
- **[JupyterHub](https://jupyter.org/hub)**: Interactive computing with collaborative notebooks
|
||||
- **[MLflow](https://mlflow.org/)**: Machine learning lifecycle management with experiment tracking and model registry
|
||||
- **[KServe](https://kserve.github.io/)**: Model serving platform for deploying ML models on Kubernetes
|
||||
- **[Trino](https://trino.io/)**: Distributed SQL query engine for querying multiple data sources
|
||||
- **[Querybook](https://www.querybook.org/)**: Big data querying UI with notebook interface
|
||||
- **[ClickHouse](https://clickhouse.com/)**: High-performance columnar analytics database
|
||||
@@ -183,6 +184,17 @@ Machine learning lifecycle management platform:
|
||||
|
||||
[📖 See MLflow Documentation](./mlflow/README.md)
|
||||
|
||||
### KServe
|
||||
|
||||
Model serving platform for deploying ML models on Kubernetes:
|
||||
|
||||
- **Multi-Framework Support**: TensorFlow, PyTorch, scikit-learn, XGBoost, MLflow, and more
|
||||
- **MLflow Integration**: Deploy models directly from MLflow Model Registry
|
||||
- **Inference Protocols**: REST and gRPC with v2 Open Inference Protocol
|
||||
- **RawDeployment Mode**: Uses native Kubernetes Deployments without Knative dependency
|
||||
|
||||
[📖 See KServe Documentation](./kserve/README.md)
|
||||
|
||||
### Apache Superset
|
||||
|
||||
Modern business intelligence platform:
|
||||
@@ -450,6 +462,18 @@ The `custom.just` file is automatically imported by the main Justfile if it exis
|
||||
|
||||
The following demo projects showcase end-to-end data workflows using buun-stack:
|
||||
|
||||
### ML Model Serving with MLflow and KServe
|
||||
|
||||
[**examples/kserve-mlflow-iris**](./examples/kserve-mlflow-iris/README.md)
|
||||
|
||||
End-to-end machine learning workflow demonstrating JupyterHub, MLflow, and KServe integration:
|
||||
|
||||
- **JupyterHub** for model training and testing
|
||||
- **MLflow** for experiment tracking and model registry
|
||||
- **KServe** for model deployment and inference
|
||||
|
||||
Key technologies: MLflow, KServe, MinIO, JupyterHub
|
||||
|
||||
### Salesforce to Iceberg REST Catalog
|
||||
|
||||
[**dlt-salesforce-iceberg-rest-demo**](https://github.com/buun-ch/dlt-salesforce-iceberg-rest-demo)
|
||||
|
||||
Reference in New Issue
Block a user