feat(jupyterhub): GPU support
This commit is contained in:
1
jupyterhub/.gitignore
vendored
1
jupyterhub/.gitignore
vendored
@@ -1,4 +1,5 @@
|
||||
jupyterhub-values.yaml
|
||||
jupyterhub-crypt-key-external-secret.yaml
|
||||
pre_spawn_hook.py
|
||||
vault-agent-config.hcl
|
||||
/notebooks/
|
||||
|
||||
@@ -9,6 +9,7 @@ JupyterHub provides a multi-user Jupyter notebook environment with Keycloak OIDC
|
||||
- [Access](#access)
|
||||
- [Kernel Images](#kernel-images)
|
||||
- [Profile Configuration](#profile-configuration)
|
||||
- [GPU Support](#gpu-support)
|
||||
- [Buun-Stack Images](#buun-stack-images)
|
||||
- [buunstack Package & SecretStore](#buunstack-package--secretstore)
|
||||
- [Vault Integration](#vault-integration)
|
||||
@@ -98,6 +99,176 @@ Available profile variables:
|
||||
|
||||
Only `JUPYTER_PROFILE_DATASCIENCE_ENABLED` is true by default.
|
||||
|
||||
## GPU Support
|
||||
|
||||
JupyterHub supports GPU-accelerated notebooks using NVIDIA GPUs. GPU support is automatically enabled during installation if the nvidia-device-plugin is detected.
|
||||
|
||||
### GPU Prerequisites
|
||||
|
||||
GPU support requires the following components to be installed:
|
||||
|
||||
#### NVIDIA Device Plugin
|
||||
|
||||
Install the NVIDIA device plugin for Kubernetes:
|
||||
|
||||
```bash
|
||||
just nvidia-device-plugin::install
|
||||
```
|
||||
|
||||
This plugin:
|
||||
|
||||
- Exposes NVIDIA GPUs to Kubernetes as schedulable resources
|
||||
- Manages GPU allocation to pods
|
||||
- Ensures proper GPU driver access within containers
|
||||
|
||||
#### RuntimeClass Configuration
|
||||
|
||||
The nvidia-device-plugin installation automatically creates the `nvidia` RuntimeClass, which:
|
||||
|
||||
- Configures containerd to use the NVIDIA container runtime
|
||||
- Enables GPU access for containers using `runtimeClassName: nvidia`
|
||||
|
||||
### Enabling GPU Support
|
||||
|
||||
During JupyterHub installation, you will be prompted:
|
||||
|
||||
```bash
|
||||
just jupyterhub::install
|
||||
# When nvidia-device-plugin is installed, you'll see:
|
||||
# "Enable GPU support for JupyterHub notebooks? (y/N)"
|
||||
```
|
||||
|
||||
Alternatively, set the environment variable before installation:
|
||||
|
||||
```bash
|
||||
JUPYTERHUB_GPU_ENABLED=true
|
||||
JUPYTERHUB_GPU_LIMIT=1 # Number of GPUs per user (default: 1)
|
||||
```
|
||||
|
||||
### GPU-Enabled Profiles
|
||||
|
||||
When GPU support is enabled:
|
||||
|
||||
1. **All notebook profiles** get GPU access via `runtimeClassName: nvidia`
|
||||
2. **CUDA-specific profile** (buun-stack-cuda) additionally includes:
|
||||
- CUDA 12.x toolkit
|
||||
- PyTorch with CUDA support
|
||||
- GPU-optimized libraries
|
||||
|
||||
### Usage
|
||||
|
||||
#### Selecting a GPU Profile
|
||||
|
||||
When spawning a notebook, select a profile with GPU capabilities:
|
||||
|
||||
- **Buun-stack with CUDA**: Recommended for GPU workloads (requires custom image)
|
||||
- **PyTorch**: Standard PyTorch notebook
|
||||
- **TensorFlow**: Standard TensorFlow notebook
|
||||
|
||||
#### Verifying GPU Access
|
||||
|
||||
In your notebook, verify GPU availability:
|
||||
|
||||
```python
|
||||
import torch
|
||||
|
||||
# Check if CUDA is available
|
||||
print(f"CUDA available: {torch.cuda.is_available()}")
|
||||
|
||||
# Get GPU device count
|
||||
print(f"GPU count: {torch.cuda.device_count()}")
|
||||
|
||||
# Get GPU device name
|
||||
if torch.cuda.is_available():
|
||||
print(f"GPU name: {torch.cuda.get_device_name(0)}")
|
||||
|
||||
# Test GPU operation
|
||||
torch.cuda.synchronize()
|
||||
print("GPU is working correctly!")
|
||||
```
|
||||
|
||||
#### GPU Configuration
|
||||
|
||||
Default GPU configuration:
|
||||
|
||||
- **GPU limit per user**: 1 GPU (configurable via `JUPYTERHUB_GPU_LIMIT`)
|
||||
- **Memory requests**: 1Gi (defined in singleuser settings)
|
||||
- **RuntimeClass**: `nvidia` (automatically applied when GPU enabled)
|
||||
|
||||
### Building GPU-Enabled Custom Images
|
||||
|
||||
If using the buun-stack-cuda profile, build and push the CUDA-enabled image:
|
||||
|
||||
```bash
|
||||
# Enable CUDA profile
|
||||
export JUPYTER_PROFILE_BUUN_STACK_CUDA_ENABLED=true
|
||||
|
||||
# Build CUDA-enabled image (includes PyTorch with CUDA 12.x)
|
||||
just jupyterhub::build-kernel-images
|
||||
|
||||
# Push to registry
|
||||
just jupyterhub::push-kernel-images
|
||||
```
|
||||
|
||||
The CUDA image:
|
||||
|
||||
- Based on `quay.io/jupyter/pytorch-notebook:x86_64-cuda12-python-3.12.10`
|
||||
- Includes PyTorch with CUDA 12.4 support (`cu124`)
|
||||
- Contains all standard buun-stack packages
|
||||
- Supports GPU-accelerated deep learning
|
||||
|
||||
### Troubleshooting GPU Issues
|
||||
|
||||
#### Pod Not Scheduling
|
||||
|
||||
If GPU-enabled pods fail to schedule:
|
||||
|
||||
```bash
|
||||
# Check if nvidia-device-plugin is running
|
||||
kubectl get pods -n nvidia-device-plugin
|
||||
|
||||
# Verify GPU resources are advertised
|
||||
kubectl describe nodes | grep nvidia.com/gpu
|
||||
|
||||
# Check RuntimeClass exists
|
||||
kubectl get runtimeclass nvidia
|
||||
```
|
||||
|
||||
#### CUDA Not Available
|
||||
|
||||
If `torch.cuda.is_available()` returns `False`:
|
||||
|
||||
1. Verify the image has CUDA support:
|
||||
|
||||
```bash
|
||||
# In notebook
|
||||
!nvcc --version # Should show CUDA compiler version
|
||||
```
|
||||
|
||||
2. Check Pod uses nvidia RuntimeClass:
|
||||
|
||||
```bash
|
||||
kubectl get pod <pod-name> -n datastack -o yaml | grep runtimeClassName
|
||||
```
|
||||
|
||||
3. Rebuild image if using custom buun-stack-cuda image
|
||||
|
||||
#### GPU Memory Issues
|
||||
|
||||
Monitor GPU usage:
|
||||
|
||||
```python
|
||||
import torch
|
||||
|
||||
# Check GPU memory
|
||||
if torch.cuda.is_available():
|
||||
print(f"Allocated: {torch.cuda.memory_allocated(0) / 1024**3:.2f} GB")
|
||||
print(f"Reserved: {torch.cuda.memory_reserved(0) / 1024**3:.2f} GB")
|
||||
|
||||
# Clear cache if needed
|
||||
torch.cuda.empty_cache()
|
||||
```
|
||||
|
||||
## Buun-Stack Images
|
||||
|
||||
Buun-stack images provide comprehensive data science environments with:
|
||||
|
||||
@@ -168,11 +168,11 @@ RUN --mount=type=cache,target=/home/${NB_USER}/.cache/pip pip install -i "${pip_
|
||||
# && pip uninstall -y pycrdt datalayer_pycrdt \
|
||||
# && pip install -i "${pip_repository_url}" 'datalayer_pycrdt==0.12.17'
|
||||
|
||||
# Install PyTorch with pip (https://pytorch.org/get-started/locally/)
|
||||
# Install PyTorch with CUDA 12.x support (https://pytorch.org/get-started/locally/)
|
||||
# langchain-openai must be updated to avoid pydantic v2 error
|
||||
# https://github.com/run-llama/llama_index/issues/16540https://github.com/run-llama/llama_index/issues/16540
|
||||
# https://github.com/run-llama/llama_index/issues/16540
|
||||
# hadolint ignore=DL3013
|
||||
RUN pip install --no-cache-dir --index-url 'https://download.pytorch.org/whl/cpu' --upgrade \
|
||||
RUN pip install --no-cache-dir --index-url 'https://download.pytorch.org/whl/cu124' --upgrade \
|
||||
langchain-openai \
|
||||
torch \
|
||||
torchaudio \
|
||||
|
||||
@@ -0,0 +1,18 @@
|
||||
apiVersion: external-secrets.io/v1
|
||||
kind: ExternalSecret
|
||||
metadata:
|
||||
name: jupyterhub-crypt-key
|
||||
namespace: {{ .Env.JUPYTERHUB_NAMESPACE }}
|
||||
spec:
|
||||
refreshInterval: 1h
|
||||
secretStoreRef:
|
||||
name: vault-secret-store
|
||||
kind: ClusterSecretStore
|
||||
target:
|
||||
name: jupyterhub-crypt-key
|
||||
creationPolicy: Owner
|
||||
data:
|
||||
- secretKey: crypt-key
|
||||
remoteRef:
|
||||
key: jupyterhub/config
|
||||
property: crypt-key
|
||||
@@ -1,6 +1,10 @@
|
||||
hub:
|
||||
extraEnv:
|
||||
JUPYTERHUB_CRYPT_KEY: {{ .Env.JUPYTERHUB_CRYPT_KEY | quote }}
|
||||
JUPYTERHUB_CRYPT_KEY:
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: jupyterhub-crypt-key
|
||||
key: crypt-key
|
||||
VAULT_ADDR: {{ .Env.VAULT_ADDR | quote }}
|
||||
NOTEBOOK_VAULT_TOKEN_TTL: {{ .Env.NOTEBOOK_VAULT_TOKEN_TTL | quote }}
|
||||
NOTEBOOK_VAULT_TOKEN_MAX_TTL: {{ .Env.NOTEBOOK_VAULT_TOKEN_MAX_TTL | quote }}
|
||||
@@ -173,6 +177,14 @@ singleuser:
|
||||
NOTEBOOK_VAULT_TOKEN_MAX_TTL: "{{ .Env.NOTEBOOK_VAULT_TOKEN_MAX_TTL }}"
|
||||
# JUPYTERHUB_SINGLEUSER_EXTENSION: "0"
|
||||
|
||||
{{- if eq .Env.JUPYTERHUB_GPU_ENABLED "true" }}
|
||||
extraPodConfig:
|
||||
runtimeClassName: nvidia
|
||||
extraResource:
|
||||
limits:
|
||||
nvidia.com/gpu: "{{ .Env.JUPYTERHUB_GPU_LIMIT }}"
|
||||
{{- end }}
|
||||
|
||||
storage:
|
||||
{{ if env.Getenv "PVC_NAME" -}}
|
||||
type: static
|
||||
|
||||
@@ -9,7 +9,7 @@ export JUPYTERHUB_NFS_PV_ENABLED := env("JUPYTERHUB_NFS_PV_ENABLED", "")
|
||||
export JUPYTERHUB_STORAGE_CLASS := env("JUPYTERHUB_STORAGE_CLASS", "")
|
||||
export JUPYTERHUB_VAULT_INTEGRATION_ENABLED := env("JUPYTERHUB_VAULT_INTEGRATION_ENABLED", "")
|
||||
export JUPYTERHUB_AIRFLOW_DAGS_PERSISTENCE_ENABLED := env("JUPYTERHUB_AIRFLOW_DAGS_PERSISTENCE_ENABLED", "")
|
||||
export JUPYTER_PYTHON_KERNEL_TAG := env("JUPYTER_PYTHON_KERNEL_TAG", "python-3.12-50")
|
||||
export JUPYTER_PYTHON_KERNEL_TAG := env("JUPYTER_PYTHON_KERNEL_TAG", "python-3.12-51")
|
||||
export KERNEL_IMAGE_BUUN_STACK_REPOSITORY := env("KERNEL_IMAGE_BUUN_STACK_REPOSITORY", "buun-stack-notebook")
|
||||
export KERNEL_IMAGE_BUUN_STACK_CUDA_REPOSITORY := env("KERNEL_IMAGE_BUUN_STACK_CUDA_REPOSITORY", "buun-stack-cuda-notebook")
|
||||
export JUPYTER_PROFILE_MINIMAL_ENABLED := env("JUPYTER_PROFILE_MINIMAL_ENABLED", "false")
|
||||
@@ -20,6 +20,8 @@ export JUPYTER_PROFILE_PYTORCH_ENABLED := env("JUPYTER_PROFILE_PYTORCH_ENABLED",
|
||||
export JUPYTER_PROFILE_TENSORFLOW_ENABLED := env("JUPYTER_PROFILE_TENSORFLOW_ENABLED", "false")
|
||||
export JUPYTER_PROFILE_BUUN_STACK_ENABLED := env("JUPYTER_PROFILE_BUUN_STACK_ENABLED", "false")
|
||||
export JUPYTER_PROFILE_BUUN_STACK_CUDA_ENABLED := env("JUPYTER_PROFILE_BUUN_STACK_CUDA_ENABLED", "false")
|
||||
export JUPYTERHUB_GPU_ENABLED := env("JUPYTERHUB_GPU_ENABLED", "")
|
||||
export JUPYTERHUB_GPU_LIMIT := env("JUPYTERHUB_GPU_LIMIT", "1")
|
||||
export JUPYTERHUB_VAULT_TOKEN_TTL := env("JUPYTERHUB_VAULT_TOKEN_TTL", "24h")
|
||||
export NOTEBOOK_VAULT_TOKEN_TTL := env("NOTEBOOK_VAULT_TOKEN_TTL", "24h")
|
||||
export NOTEBOOK_VAULT_TOKEN_MAX_TTL := env("NOTEBOOK_VAULT_TOKEN_MAX_TTL", "168h")
|
||||
@@ -38,6 +40,8 @@ export VAULT_ADDR := "https://" + VAULT_HOST
|
||||
export MONITORING_ENABLED := env("MONITORING_ENABLED", "")
|
||||
export PROMETHEUS_NAMESPACE := env("PROMETHEUS_NAMESPACE", "monitoring")
|
||||
export DOCKER_CMD := env("DOCKER_CMD", "docker")
|
||||
export EXTERNAL_SECRETS_NAMESPACE := env("EXTERNAL_SECRETS_NAMESPACE", "external-secrets")
|
||||
export K8S_VAULT_NAMESPACE := env("K8S_VAULT_NAMESPACE", "vault")
|
||||
|
||||
[private]
|
||||
default:
|
||||
@@ -61,6 +65,37 @@ create-namespace:
|
||||
delete-namespace:
|
||||
kubectl delete namespace ${JUPYTERHUB_NAMESPACE} --ignore-not-found
|
||||
|
||||
# Create JupyterHub crypt key secret
|
||||
create-crypt-key-secret:
|
||||
#!/bin/bash
|
||||
set -euo pipefail
|
||||
crypt_key=$(just utils::random-password)
|
||||
|
||||
if helm status external-secrets -n ${EXTERNAL_SECRETS_NAMESPACE} &>/dev/null; then
|
||||
echo "External Secrets Operator detected. Storing crypt key in Vault..."
|
||||
just vault::put jupyterhub/config crypt-key="${crypt_key}"
|
||||
|
||||
kubectl delete secret jupyterhub-crypt-key -n ${JUPYTERHUB_NAMESPACE} --ignore-not-found
|
||||
kubectl delete externalsecret jupyterhub-crypt-key -n ${JUPYTERHUB_NAMESPACE} --ignore-not-found
|
||||
|
||||
gomplate -f jupyterhub-crypt-key-external-secret.gomplate.yaml \
|
||||
-o jupyterhub-crypt-key-external-secret.yaml
|
||||
kubectl apply -f jupyterhub-crypt-key-external-secret.yaml
|
||||
|
||||
echo "Waiting for ExternalSecret to sync..."
|
||||
kubectl wait --for=condition=Ready externalsecret/jupyterhub-crypt-key \
|
||||
-n ${JUPYTERHUB_NAMESPACE} --timeout=60s
|
||||
else
|
||||
echo "External Secrets Operator not found. Creating secret directly..."
|
||||
kubectl delete secret jupyterhub-crypt-key -n ${JUPYTERHUB_NAMESPACE} --ignore-not-found
|
||||
kubectl create secret generic jupyterhub-crypt-key -n ${JUPYTERHUB_NAMESPACE} \
|
||||
--from-literal=crypt-key="${crypt_key}"
|
||||
|
||||
if helm status vault -n ${K8S_VAULT_NAMESPACE} &>/dev/null; then
|
||||
just vault::put jupyterhub/config crypt-key="${crypt_key}"
|
||||
fi
|
||||
fi
|
||||
|
||||
# Install JupyterHub
|
||||
install root_token='':
|
||||
#!/bin/bash
|
||||
@@ -73,12 +108,11 @@ install root_token='':
|
||||
)
|
||||
done
|
||||
|
||||
# Generate JUPYTERHUB_CRYPT_KEY if not exists
|
||||
if [ -z "${JUPYTERHUB_CRYPT_KEY:-}" ]; then
|
||||
echo "Generating JUPYTERHUB_CRYPT_KEY..."
|
||||
export JUPYTERHUB_CRYPT_KEY=$(just utils::random-password)
|
||||
echo "JUPYTERHUB_CRYPT_KEY=${JUPYTERHUB_CRYPT_KEY}" >> ../../.env.local
|
||||
echo "✓ JUPYTERHUB_CRYPT_KEY generated and saved to .env.local"
|
||||
just create-namespace
|
||||
|
||||
# Create crypt key secret if it doesn't exist
|
||||
if ! kubectl get secret jupyterhub-crypt-key -n ${JUPYTERHUB_NAMESPACE} &>/dev/null; then
|
||||
just create-crypt-key-secret
|
||||
fi
|
||||
|
||||
if helm status kube-prometheus-stack -n ${PROMETHEUS_NAMESPACE} &>/dev/null; then
|
||||
@@ -93,7 +127,25 @@ install root_token='':
|
||||
MONITORING_ENABLED="false"
|
||||
fi
|
||||
|
||||
just create-namespace
|
||||
# Check if nvidia-device-plugin is installed
|
||||
if helm status nvidia-device-plugin -n ${NVIDIA_DEVICE_PLUGIN_NAMESPACE:-nvidia-device-plugin} &>/dev/null; then
|
||||
if [ -z "${JUPYTERHUB_GPU_ENABLED}" ]; then
|
||||
if gum confirm "Enable GPU support for JupyterHub notebooks?"; then
|
||||
JUPYTERHUB_GPU_ENABLED="true"
|
||||
if [ -z "${JUPYTERHUB_GPU_LIMIT}" ]; then
|
||||
JUPYTERHUB_GPU_LIMIT=$(
|
||||
gum input --prompt="GPU limit per user (default: 1): " --width=100 \
|
||||
--placeholder="1" --value="1"
|
||||
)
|
||||
fi
|
||||
else
|
||||
JUPYTERHUB_GPU_ENABLED="false"
|
||||
fi
|
||||
fi
|
||||
else
|
||||
JUPYTERHUB_GPU_ENABLED="false"
|
||||
fi
|
||||
|
||||
# just k8s::copy-regcred ${JUPYTERHUB_NAMESPACE}
|
||||
just keycloak::create-client realm=${KEYCLOAK_REALM} client_id=${JUPYTERHUB_OIDC_CLIENT_ID} \
|
||||
redirect_url="https://${JUPYTERHUB_HOST}/hub/oauth_callback" \
|
||||
@@ -216,11 +268,18 @@ uninstall:
|
||||
helm uninstall jupyterhub -n ${JUPYTERHUB_NAMESPACE} --wait --ignore-not-found
|
||||
kubectl delete pods -n ${JUPYTERHUB_NAMESPACE} -l app.kubernetes.io/component=singleuser-server
|
||||
kubectl delete -n ${JUPYTERHUB_NAMESPACE} pvc jupyter-nfs-pvc --ignore-not-found
|
||||
kubectl delete -n ${JUPYTERHUB_NAMESPACE} secret jupyterhub-crypt-key --ignore-not-found
|
||||
kubectl delete -n ${JUPYTERHUB_NAMESPACE} externalsecret jupyterhub-crypt-key --ignore-not-found
|
||||
kubectl delete -n ${JUPYTERHUB_NAMESPACE} externalsecret jupyterhub-vault-token --ignore-not-found
|
||||
if kubectl get pv jupyter-nfs-pv &>/dev/null; then
|
||||
kubectl patch pv jupyter-nfs-pv -p '{"spec":{"claimRef":null}}'
|
||||
fi
|
||||
|
||||
# Clean up Vault entries if present
|
||||
if helm status vault -n ${K8S_VAULT_NAMESPACE} &>/dev/null; then
|
||||
just vault::delete jupyterhub/config || true
|
||||
fi
|
||||
|
||||
# Delete JupyterHub PV and StorageClass
|
||||
delete-pv:
|
||||
#!/bin/bash
|
||||
|
||||
Reference in New Issue
Block a user