feat(jupyterhub): GPU support
This commit is contained in:
@@ -9,6 +9,7 @@ JupyterHub provides a multi-user Jupyter notebook environment with Keycloak OIDC
|
||||
- [Access](#access)
|
||||
- [Kernel Images](#kernel-images)
|
||||
- [Profile Configuration](#profile-configuration)
|
||||
- [GPU Support](#gpu-support)
|
||||
- [Buun-Stack Images](#buun-stack-images)
|
||||
- [buunstack Package & SecretStore](#buunstack-package--secretstore)
|
||||
- [Vault Integration](#vault-integration)
|
||||
@@ -98,6 +99,176 @@ Available profile variables:
|
||||
|
||||
Only `JUPYTER_PROFILE_DATASCIENCE_ENABLED` is true by default.
|
||||
|
||||
## GPU Support
|
||||
|
||||
JupyterHub supports GPU-accelerated notebooks using NVIDIA GPUs. GPU support is automatically enabled during installation if the nvidia-device-plugin is detected.
|
||||
|
||||
### GPU Prerequisites
|
||||
|
||||
GPU support requires the following components to be installed:
|
||||
|
||||
#### NVIDIA Device Plugin
|
||||
|
||||
Install the NVIDIA device plugin for Kubernetes:
|
||||
|
||||
```bash
|
||||
just nvidia-device-plugin::install
|
||||
```
|
||||
|
||||
This plugin:
|
||||
|
||||
- Exposes NVIDIA GPUs to Kubernetes as schedulable resources
|
||||
- Manages GPU allocation to pods
|
||||
- Ensures proper GPU driver access within containers
|
||||
|
||||
#### RuntimeClass Configuration
|
||||
|
||||
The nvidia-device-plugin installation automatically creates the `nvidia` RuntimeClass, which:
|
||||
|
||||
- Configures containerd to use the NVIDIA container runtime
|
||||
- Enables GPU access for containers using `runtimeClassName: nvidia`
|
||||
|
||||
### Enabling GPU Support
|
||||
|
||||
During JupyterHub installation, you will be prompted:
|
||||
|
||||
```bash
|
||||
just jupyterhub::install
|
||||
# When nvidia-device-plugin is installed, you'll see:
|
||||
# "Enable GPU support for JupyterHub notebooks? (y/N)"
|
||||
```
|
||||
|
||||
Alternatively, set the environment variable before installation:
|
||||
|
||||
```bash
|
||||
JUPYTERHUB_GPU_ENABLED=true
|
||||
JUPYTERHUB_GPU_LIMIT=1 # Number of GPUs per user (default: 1)
|
||||
```
|
||||
|
||||
### GPU-Enabled Profiles
|
||||
|
||||
When GPU support is enabled:
|
||||
|
||||
1. **All notebook profiles** get GPU access via `runtimeClassName: nvidia`
|
||||
2. **CUDA-specific profile** (buun-stack-cuda) additionally includes:
|
||||
- CUDA 12.x toolkit
|
||||
- PyTorch with CUDA support
|
||||
- GPU-optimized libraries
|
||||
|
||||
### Usage
|
||||
|
||||
#### Selecting a GPU Profile
|
||||
|
||||
When spawning a notebook, select a profile with GPU capabilities:
|
||||
|
||||
- **Buun-stack with CUDA**: Recommended for GPU workloads (requires custom image)
|
||||
- **PyTorch**: Standard PyTorch notebook
|
||||
- **TensorFlow**: Standard TensorFlow notebook
|
||||
|
||||
#### Verifying GPU Access
|
||||
|
||||
In your notebook, verify GPU availability:
|
||||
|
||||
```python
|
||||
import torch
|
||||
|
||||
# Check if CUDA is available
|
||||
print(f"CUDA available: {torch.cuda.is_available()}")
|
||||
|
||||
# Get GPU device count
|
||||
print(f"GPU count: {torch.cuda.device_count()}")
|
||||
|
||||
# Get GPU device name
|
||||
if torch.cuda.is_available():
|
||||
print(f"GPU name: {torch.cuda.get_device_name(0)}")
|
||||
|
||||
# Test GPU operation
|
||||
torch.cuda.synchronize()
|
||||
print("GPU is working correctly!")
|
||||
```
|
||||
|
||||
#### GPU Configuration
|
||||
|
||||
Default GPU configuration:
|
||||
|
||||
- **GPU limit per user**: 1 GPU (configurable via `JUPYTERHUB_GPU_LIMIT`)
|
||||
- **Memory requests**: 1Gi (defined in singleuser settings)
|
||||
- **RuntimeClass**: `nvidia` (automatically applied when GPU enabled)
|
||||
|
||||
### Building GPU-Enabled Custom Images
|
||||
|
||||
If using the buun-stack-cuda profile, build and push the CUDA-enabled image:
|
||||
|
||||
```bash
|
||||
# Enable CUDA profile
|
||||
export JUPYTER_PROFILE_BUUN_STACK_CUDA_ENABLED=true
|
||||
|
||||
# Build CUDA-enabled image (includes PyTorch with CUDA 12.x)
|
||||
just jupyterhub::build-kernel-images
|
||||
|
||||
# Push to registry
|
||||
just jupyterhub::push-kernel-images
|
||||
```
|
||||
|
||||
The CUDA image:
|
||||
|
||||
- Based on `quay.io/jupyter/pytorch-notebook:x86_64-cuda12-python-3.12.10`
|
||||
- Includes PyTorch with CUDA 12.4 support (`cu124`)
|
||||
- Contains all standard buun-stack packages
|
||||
- Supports GPU-accelerated deep learning
|
||||
|
||||
### Troubleshooting GPU Issues
|
||||
|
||||
#### Pod Not Scheduling
|
||||
|
||||
If GPU-enabled pods fail to schedule:
|
||||
|
||||
```bash
|
||||
# Check if nvidia-device-plugin is running
|
||||
kubectl get pods -n nvidia-device-plugin
|
||||
|
||||
# Verify GPU resources are advertised
|
||||
kubectl describe nodes | grep nvidia.com/gpu
|
||||
|
||||
# Check RuntimeClass exists
|
||||
kubectl get runtimeclass nvidia
|
||||
```
|
||||
|
||||
#### CUDA Not Available
|
||||
|
||||
If `torch.cuda.is_available()` returns `False`:
|
||||
|
||||
1. Verify the image has CUDA support:
|
||||
|
||||
```bash
|
||||
# In notebook
|
||||
!nvcc --version # Should show CUDA compiler version
|
||||
```
|
||||
|
||||
2. Check Pod uses nvidia RuntimeClass:
|
||||
|
||||
```bash
|
||||
kubectl get pod <pod-name> -n datastack -o yaml | grep runtimeClassName
|
||||
```
|
||||
|
||||
3. Rebuild image if using custom buun-stack-cuda image
|
||||
|
||||
#### GPU Memory Issues
|
||||
|
||||
Monitor GPU usage:
|
||||
|
||||
```python
|
||||
import torch
|
||||
|
||||
# Check GPU memory
|
||||
if torch.cuda.is_available():
|
||||
print(f"Allocated: {torch.cuda.memory_allocated(0) / 1024**3:.2f} GB")
|
||||
print(f"Reserved: {torch.cuda.memory_reserved(0) / 1024**3:.2f} GB")
|
||||
|
||||
# Clear cache if needed
|
||||
torch.cuda.empty_cache()
|
||||
```
|
||||
|
||||
## Buun-Stack Images
|
||||
|
||||
Buun-stack images provide comprehensive data science environments with:
|
||||
|
||||
Reference in New Issue
Block a user