docs: write about Apache Superset
This commit is contained in:
34
README.md
34
README.md
@@ -360,6 +360,40 @@ Add new modules to the `custom/` directory following the same pattern as the exa
|
|||||||
|
|
||||||
The `custom.just` file is automatically imported by the main Justfile if it exists, allowing you to maintain your custom workflows separately from the core stack.
|
The `custom.just` file is automatically imported by the main Justfile if it exists, allowing you to maintain your custom workflows separately from the core stack.
|
||||||
|
|
||||||
|
## Demo Projects
|
||||||
|
|
||||||
|
The following demo projects showcase end-to-end data workflows using buun-stack:
|
||||||
|
|
||||||
|
### Salesforce to Iceberg REST Catalog
|
||||||
|
|
||||||
|
[**dlt-salesforce-iceberg-rest-demo**](https://github.com/buun-ch/dlt-salesforce-iceberg-rest-demo)
|
||||||
|
|
||||||
|
Demonstrates Salesforce data ingestion into an Iceberg data lake:
|
||||||
|
|
||||||
|
- **dlt** extracts data from Salesforce API (Account, Contact, Opportunity, etc.)
|
||||||
|
- **Custom Iceberg destination** loads data into Lakekeeper REST Catalog
|
||||||
|
- **Automatic schema conversion** from dlt to Iceberg with PyArrow
|
||||||
|
- **Orchestration** with Dagster or Apache Airflow
|
||||||
|
- **Query** with Trino and visualize in Superset/Metabase
|
||||||
|
|
||||||
|
Key technologies: dlt, PyIceberg, Lakekeeper, Trino, MinIO
|
||||||
|
|
||||||
|
### E-commerce Lakehouse Analytics
|
||||||
|
|
||||||
|
[**payload-ecommerce-lakehouse-demo**](https://github.com/buun-ch/payload-ecommerce-lakehouse-demo)
|
||||||
|
|
||||||
|
Full-stack e-commerce application with integrated lakehouse analytics:
|
||||||
|
|
||||||
|
- **Next.js + Payload CMS** for e-commerce application
|
||||||
|
- **dlt** ingests data incrementally from Payload API to Iceberg
|
||||||
|
- **dbt** transforms raw data into analytics-ready star schema
|
||||||
|
- **Trino** queries across all data layers (raw, staging, marts)
|
||||||
|
- **Superset/Metabase** for dashboards and business intelligence
|
||||||
|
|
||||||
|
Key technologies: Next.js, Payload CMS, dlt, dbt, Iceberg, Trino, Superset, PostgreSQL
|
||||||
|
|
||||||
|
Both projects demonstrate the medallion architecture (raw → staging → marts) and showcase how buun-stack components work together for production data workflows.
|
||||||
|
|
||||||
## Troubleshooting
|
## Troubleshooting
|
||||||
|
|
||||||
- Check logs: `kubectl logs -n <namespace> <pod-name>`
|
- Check logs: `kubectl logs -n <namespace> <pod-name>`
|
||||||
|
|||||||
Reference in New Issue
Block a user