feat(kserve): install KServe
This commit is contained in:
44
examples/kserve-mlflow-iris/02-deploy-model.yaml
Normal file
44
examples/kserve-mlflow-iris/02-deploy-model.yaml
Normal file
@@ -0,0 +1,44 @@
|
||||
apiVersion: serving.kserve.io/v1beta1
|
||||
kind: InferenceService
|
||||
metadata:
|
||||
name: iris-classifier
|
||||
namespace: kserve
|
||||
annotations:
|
||||
serving.kserve.io/secretName: kserve-s3-credentials
|
||||
spec:
|
||||
predictor:
|
||||
model:
|
||||
modelFormat:
|
||||
name: mlflow
|
||||
version: "2"
|
||||
storageUri: s3://mlflow/EXPERIMENT_ID/models/MODEL_ID/artifacts
|
||||
resources:
|
||||
requests:
|
||||
cpu: "100m"
|
||||
memory: "512Mi"
|
||||
limits:
|
||||
cpu: "1000m"
|
||||
memory: "1Gi"
|
||||
---
|
||||
# Alternative: Using SKLearn Server (does not install requirements.txt)
|
||||
# apiVersion: serving.kserve.io/v1beta1
|
||||
# kind: InferenceService
|
||||
# metadata:
|
||||
# name: iris-classifier
|
||||
# namespace: kserve
|
||||
# annotations:
|
||||
# serving.kserve.io/secretName: kserve-s3-credentials
|
||||
# spec:
|
||||
# predictor:
|
||||
# model:
|
||||
# modelFormat:
|
||||
# name: sklearn
|
||||
# version: "1"
|
||||
# storageUri: s3://mlflow/EXPERIMENT_ID/models/MODEL_ID/artifacts
|
||||
# resources:
|
||||
# requests:
|
||||
# cpu: "100m"
|
||||
# memory: "256Mi"
|
||||
# limits:
|
||||
# cpu: "500m"
|
||||
# memory: "512Mi"
|
||||
Reference in New Issue
Block a user