docs: reconstruct docs

This commit is contained in:
Masaki Yatsu
2025-11-13 13:26:57 +09:00
parent 972adc209d
commit 0ff24310ce
8 changed files with 1164 additions and 590 deletions

View File

@@ -159,6 +159,7 @@ install:
```
ServiceMonitor template (`servicemonitor.gomplate.yaml`):
```yaml
{{- if eq .Env.MONITORING_ENABLED "true" }}
apiVersion: monitoring.coreos.com/v1
@@ -366,3 +367,36 @@ receiving
- Only write code comments when necessary, as the code should be self-explanatory
(Avoid trivial comment for each code block)
- Write output messages and code comments in English
### Markdown Style
When writing Markdown documentation:
1. **NEVER use ordered lists as section headers**:
- Ordered lists indent content and are not suitable for headings
- Use proper heading levels (####) instead of numbered lists for section titles
```markdown
<!-- INCORRECT: Ordered list used as headers -->
1. **Setup Instructions:**
Details here...
2. **Next Step:**
More details...
<!-- CORRECT: Use headings instead -->
#### Setup Instructions
Details here...
#### Next Step
More details...
```
2. **Always validate with markdownlint-cli2**:
- Run `markdownlint-cli2 <file>` before committing any Markdown files
- Fix all linting errors to ensure consistent formatting
- Pay attention to code block language specifications (MD040) and list formatting (MD029)

View File

@@ -46,7 +46,7 @@ This document covers Airflow installation, deployment, and debugging in the buun
**Note**: New users have only Viewer access by default and cannot execute DAGs without role assignment.
4. **Access Airflow Web UI**:
- Navigate to your Airflow instance (e.g., `https://airflow.buun.dev`)
- Navigate to your Airflow instance (e.g., `https://airflow.yourdomain.com`)
- Login with your Keycloak credentials
### Uninstalling
@@ -63,7 +63,7 @@ just airflow::uninstall true
### 1. Access JupyterHub
- Navigate to your JupyterHub instance (e.g., `https://jupyter.buun.dev`)
- Navigate to your JupyterHub instance (e.g., `https://jupyter.yourdomain.com`)
- Login with your credentials
### 2. Navigate to Airflow DAGs Directory
@@ -82,7 +82,7 @@ In JupyterHub, the Airflow DAGs directory is mounted at:
### 4. Verify Deployment
1. Access Airflow Web UI (e.g., `https://airflow.buun.dev`)
1. Access Airflow Web UI (e.g., `https://airflow.yourdomain.com`)
2. Check that the DAG `csv_to_postgres` appears in the DAGs list
3. If the DAG doesn't appear immediately, wait 1-2 minutes for Airflow to detect the new file

View File

@@ -28,7 +28,7 @@ This document covers Dagster installation, deployment, and debugging in the buun
```
3. **Access Dagster Web UI**:
- Navigate to your Dagster instance (e.g., `https://dagster.buun.dev`)
- Navigate to your Dagster instance (e.g., `https://dagster.yourdomain.com`)
- Login with your Keycloak credentials
### Uninstalling

View File

@@ -1,577 +1,5 @@
# JupyterHub
# JupyterHub Documentation
JupyterHub provides a multi-user Jupyter notebook environment with Keycloak OIDC authentication, Vault integration for secure secrets management, and custom kernel images for data science workflows.
This documentation has been moved to [jupyterhub/README.md](../jupyterhub/README.md).
## Installation
Install JupyterHub with interactive configuration:
```bash
just jupyterhub::install
```
This will prompt for:
- JupyterHub host (FQDN)
- NFS PV usage (if Longhorn is installed)
- NFS server details (if NFS is enabled)
- Vault integration setup (requires root token for initial setup)
### Prerequisites
- Keycloak must be installed and configured
- For NFS storage: Longhorn must be installed
- For Vault integration: Vault and External Secrets Operator must be installed
- Helm repository must be accessible
## Kernel Images
### Important Note
Building and using custom buun-stack images requires building the `buunstack` Python package first. The package wheel file will be included in the Docker image during build.
JupyterHub supports multiple kernel image profiles:
### Standard Profiles
- **minimal**: Basic Python environment
- **base**: Python with common data science packages
- **datascience**: Full data science stack (default)
- **pyspark**: PySpark for big data processing
- **pytorch**: PyTorch for machine learning
- **tensorflow**: TensorFlow for machine learning
### Buun-Stack Profiles
- **buun-stack**: Comprehensive data science environment with Vault integration
- **buun-stack-cuda**: CUDA-enabled version with GPU support
## Profile Configuration
Enable/disable profiles using environment variables:
```bash
# Enable buun-stack profile (CPU version)
JUPYTER_PROFILE_BUUN_STACK_ENABLED=true
# Enable buun-stack CUDA profile (GPU version)
JUPYTER_PROFILE_BUUN_STACK_CUDA_ENABLED=true
# Disable default datascience profile
JUPYTER_PROFILE_DATASCIENCE_ENABLED=false
```
Available profile variables:
- `JUPYTER_PROFILE_MINIMAL_ENABLED`
- `JUPYTER_PROFILE_BASE_ENABLED`
- `JUPYTER_PROFILE_DATASCIENCE_ENABLED`
- `JUPYTER_PROFILE_PYSPARK_ENABLED`
- `JUPYTER_PROFILE_PYTORCH_ENABLED`
- `JUPYTER_PROFILE_TENSORFLOW_ENABLED`
- `JUPYTER_PROFILE_BUUN_STACK_ENABLED`
- `JUPYTER_PROFILE_BUUN_STACK_CUDA_ENABLED`
Only `JUPYTER_PROFILE_DATASCIENCE_ENABLED` is true by default.
## Buun-Stack Images
Buun-stack images provide comprehensive data science environments with:
- All standard data science packages (NumPy, Pandas, Scikit-learn, etc.)
- Deep learning frameworks (PyTorch, TensorFlow, Keras)
- Big data tools (PySpark, Apache Arrow)
- NLP and ML libraries (LangChain, Transformers, spaCy)
- Database connectors and tools
- **Vault integration** with `buunstack` Python package
### Building Custom Images
Build and push buun-stack images to your registry:
```bash
# Build images (includes building the buunstack Python package)
just jupyterhub::build-kernel-images
# Push to registry
just jupyterhub::push-kernel-images
```
The build process:
1. Builds the `buunstack` Python package wheel
2. Copies the wheel into the Docker build context
3. Installs the wheel in the Docker image
4. Cleans up temporary files
⚠️ **Note**: Buun-stack images are comprehensive and large (~13GB). Initial image pulls and deployments take significant time due to the extensive package set.
### Image Configuration
Configure image settings in `.env.local`:
```bash
# Image registry
IMAGE_REGISTRY=localhost:30500
# Image tag (current default)
JUPYTER_PYTHON_KERNEL_TAG=python-3.12-28
```
## Vault Integration
### Overview
Vault integration enables secure secrets management directly from Jupyter notebooks. The system uses:
- **ExternalSecret** to fetch the admin token from Vault
- **Renewable tokens** with unlimited Max TTL to avoid 30-day system limitations
- **Token renewal script** that automatically renews tokens at TTL/2 intervals (minimum 30 seconds)
- **User-specific tokens** created during notebook spawn with isolated access
### Architecture
```plain
┌────────────────────────────────────────────────────────────────┐
│ JupyterHub Hub Pod │
│ │
│ ┌──────────────┐ ┌────────────────┐ ┌────────────────────┐ │
│ │ Hub │ │ Token Renewer │ │ ExternalSecret │ │
│ │ Container │◄─┤ Sidecar │◄─┤ (mounted as │ │
│ │ │ │ │ │ Secret) │ │
│ └──────────────┘ └────────────────┘ └────────────────────┘ │
│ │ │ ▲ │
│ │ │ │ │
│ ▼ ▼ │ │
│ ┌──────────────────────────────────┐ │ │
│ │ /vault/secrets/vault-token │ │ │
│ │ (Admin token for user creation) │ │ │
│ └──────────────────────────────────┘ │ │
└────────────────────────────────────────────────────┼───────────┘
┌───────────▼──────────┐
│ Vault │
│ secret/jupyterhub/ │
│ vault-token │
└──────────────────────┘
```
### Prerequisites
Vault integration requires:
- Vault server installed and configured
- External Secrets Operator installed
- ClusterSecretStore configured for Vault
- Buun-stack kernel images (standard images don't include Vault integration)
### Setup
Vault integration is configured during JupyterHub installation:
```bash
just jupyterhub::install
# Answer "yes" when prompted about Vault integration
# Provide Vault root token when prompted
```
The setup process:
1. Creates `jupyterhub-admin` policy with necessary permissions including `sudo` for orphan token creation
2. Creates renewable admin token with 24h TTL and unlimited Max TTL
3. Stores token in Vault at `secret/jupyterhub/vault-token`
4. Creates ExternalSecret to fetch token from Vault
5. Deploys token renewal sidecar for automatic renewal
### Usage in Notebooks
With Vault integration enabled, use the `buunstack` package in notebooks:
```python
from buunstack import SecretStore
# Initialize (uses pre-acquired user-specific token)
secrets = SecretStore()
# Store secrets
secrets.put('api-keys',
openai='sk-...',
github='ghp_...',
database_url='postgresql://...')
# Retrieve secrets
api_keys = secrets.get('api-keys')
openai_key = secrets.get('api-keys', field='openai')
# List all secrets
secret_names = secrets.list()
# Delete secrets or specific fields
secrets.delete('old-api-key') # Delete entire secret
secrets.delete('api-keys', field='github') # Delete only github field
```
### Security Features
- **User isolation**: Each user receives an orphan token with access only to their namespace
- **Automatic renewal**: Token renewal script renews admin token at TTL/2 intervals (minimum 30 seconds)
- **ExternalSecret integration**: Admin token fetched securely from Vault
- **Orphan tokens**: User tokens are orphan tokens, not limited by parent policy restrictions
- **Audit trail**: All secret access is logged in Vault
### Token Management
#### Admin Token
The admin token is managed through:
1. **Creation**: `just jupyterhub::create-jupyterhub-vault-token` creates renewable token
2. **Storage**: Stored in Vault at `secret/jupyterhub/vault-token`
3. **Retrieval**: ExternalSecret fetches and mounts as Kubernetes Secret
4. **Renewal**: `vault-token-renewer.sh` script renews at TTL/2 intervals
#### User Tokens
User tokens are created dynamically:
1. **Pre-spawn hook** reads admin token from `/vault/secrets/vault-token`
2. **Creates user policy** `jupyter-user-{username}` with restricted access
3. **Creates orphan token** with user policy (requires `sudo` permission)
4. **Sets environment variable** `NOTEBOOK_VAULT_TOKEN` in notebook container
## Token Renewal Implementation
### Admin Token Renewal
The admin token renewal is handled by a sidecar container (`vault-token-renewer`) running alongside the JupyterHub hub:
**Implementation Details:**
1. **Renewal Script**: `/vault/config/vault-token-renewer.sh`
- Runs in the `vault-token-renewer` sidecar container
- Uses Vault 1.17.5 image with HashiCorp Vault CLI
2. **Environment-Based TTL Configuration**:
```bash
# Reads TTL from environment variable (set in .env.local)
TTL_RAW="${JUPYTERHUB_VAULT_TOKEN_TTL}" # e.g., "5m", "24h"
# Converts to seconds and calculates renewal interval
RENEWAL_INTERVAL=$((TTL_SECONDS / 2)) # TTL/2 with minimum 30s
```
3. **Token Source**: ExternalSecret → Kubernetes Secret → mounted file
```bash
# Token retrieved from ExternalSecret-managed mount
ADMIN_TOKEN=$(cat /vault/admin-token/token)
```
4. **Renewal Loop**:
```bash
while true; do
vault token renew >/dev/null 2>&1
sleep $RENEWAL_INTERVAL
done
```
5. **Error Handling**: If renewal fails, re-retrieves token from ExternalSecret mount
**Key Files:**
- `vault-token-renewer.sh`: Main renewal script
- `jupyterhub-vault-token-external-secret.gomplate.yaml`: ExternalSecret configuration
- `vault-token-renewer-config` ConfigMap: Contains the renewal script
### User Token Renewal
User token renewal is handled within the notebook environment by the `buunstack` Python package:
**Implementation Details:**
1. **Token Source**: Environment variable set by pre-spawn hook
```python
# In pre_spawn_hook.gomplate.py
spawner.environment["NOTEBOOK_VAULT_TOKEN"] = user_vault_token
```
2. **Automatic Renewal**: Built into `SecretStore` class operations
```python
# In buunstack/secrets.py
def _ensure_authenticated(self):
token_info = self.client.auth.token.lookup_self()
ttl = token_info.get("data", {}).get("ttl", 0)
renewable = token_info.get("data", {}).get("renewable", False)
# Renew if TTL < 10 minutes and renewable
if renewable and ttl > 0 and ttl < 600:
self.client.auth.token.renew_self()
```
3. **Renewal Trigger**: Every `SecretStore` operation (get, put, delete, list)
- Checks token validity before operation
- Automatically renews if TTL < 10 minutes
- Transparent to user code
4. **Token Configuration** (set during creation):
- **TTL**: `NOTEBOOK_VAULT_TOKEN_TTL` (default: 24h = 1 day)
- **Max TTL**: `NOTEBOOK_VAULT_TOKEN_MAX_TTL` (default: 168h = 7 days)
- **Policy**: User-specific `jupyter-user-{username}`
- **Type**: Orphan token (independent of parent token lifecycle)
5. **Expiry Handling**: When token reaches Max TTL:
- Cannot be renewed further
- User must restart notebook server (triggers new token creation)
- Prevented by `JUPYTERHUB_CULL_MAX_AGE` setting (6 days < 7 day Max TTL)
**Key Files:**
- `pre_spawn_hook.gomplate.py`: User token creation logic
- `buunstack/secrets.py`: Token renewal implementation
- `user_policy.hcl`: User token permissions template
### Token Lifecycle Summary
```
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ Admin Token │ │ User Token │ │ Pod Lifecycle │
│ │ │ │ │ │
│ Created: Manual │ │ Created: Spawn │ │ Max Age: 7 days │
│ TTL: 5m-24h │ │ TTL: 1 day │ │ Auto-restart │
│ Max TTL: ∞ │ │ Max TTL: 7 days │ │ at Max TTL │
│ Renewal: Auto │ │ Renewal: Auto │ │ │
│ Interval: TTL/2 │ │ Trigger: Usage │ │ │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│ │ │
▼ ▼ ▼
vault-token-renewer buunstack.py cull.maxAge
sidecar SecretStore pod restart
```
## Storage Options
### Default Storage
Uses Kubernetes PersistentVolumes for user home directories.
### NFS Storage
For shared storage across nodes, configure NFS:
```bash
JUPYTERHUB_NFS_PV_ENABLED=true
JUPYTER_NFS_IP=192.168.10.1
JUPYTER_NFS_PATH=/volume1/drive1/jupyter
```
NFS storage requires:
- Longhorn storage system installed
- NFS server accessible from cluster nodes
- Proper NFS export permissions configured
## Configuration
### Environment Variables
Key configuration variables:
```bash
# Basic settings
JUPYTERHUB_NAMESPACE=jupyter
JUPYTERHUB_CHART_VERSION=4.2.0
JUPYTERHUB_OIDC_CLIENT_ID=jupyterhub
# Keycloak integration
KEYCLOAK_REALM=buunstack
# Storage
JUPYTERHUB_NFS_PV_ENABLED=false
# Vault integration
JUPYTERHUB_VAULT_INTEGRATION_ENABLED=false
VAULT_ADDR=https://vault.example.com
# Image settings
JUPYTER_PYTHON_KERNEL_TAG=python-3.12-28
IMAGE_REGISTRY=localhost:30500
# Vault token TTL settings
JUPYTERHUB_VAULT_TOKEN_TTL=24h # Admin token: renewed at TTL/2 intervals
NOTEBOOK_VAULT_TOKEN_TTL=24h # User token: 1 day (renewed on usage)
NOTEBOOK_VAULT_TOKEN_MAX_TTL=168h # User token: 7 days max
# Server pod lifecycle settings
JUPYTERHUB_CULL_MAX_AGE=604800 # Max pod age in seconds (7 days = 604800s)
# Should be <= NOTEBOOK_VAULT_TOKEN_MAX_TTL
# Logging
JUPYTER_BUUNSTACK_LOG_LEVEL=warning # Options: debug, info, warning, error
```
### Advanced Configuration
Customize JupyterHub behavior by editing `jupyterhub-values.gomplate.yaml` template before installation.
## Management
### Uninstall
```bash
just jupyterhub::uninstall
```
This removes:
- JupyterHub deployment
- User pods
- PVCs
- ExternalSecret
### Update
Upgrade to newer versions:
```bash
# Update image tag in .env.local
export JUPYTER_PYTHON_KERNEL_TAG=python-3.12-29
# Rebuild and push images
just jupyterhub::build-kernel-images
just jupyterhub::push-kernel-images
# Upgrade JupyterHub deployment
just jupyterhub::install
```
### Manual Token Refresh
If needed, manually refresh the admin token:
```bash
# Create new renewable token
just jupyterhub::create-jupyterhub-vault-token
# Restart JupyterHub to pick up new token
kubectl rollout restart deployment/hub -n jupyter
```
## Troubleshooting
### Image Pull Issues
Buun-stack images are large and may timeout:
```bash
# Check pod status
kubectl get pods -n jupyter
# Check image pull progress
kubectl describe pod <pod-name> -n jupyter
# Increase timeout if needed
helm upgrade jupyterhub jupyterhub/jupyterhub --timeout=30m -f jupyterhub-values.yaml
```
### Vault Integration Issues
Check token and authentication:
```bash
# Check ExternalSecret status
kubectl get externalsecret -n jupyter jupyterhub-vault-token
# Check if Secret was created
kubectl get secret -n jupyter jupyterhub-vault-token
# Check token renewal logs
kubectl logs -n jupyter -l app.kubernetes.io/component=hub -c vault-token-renewer
# In a notebook, verify environment
%env NOTEBOOK_VAULT_TOKEN
```
Common issues:
1. **"child policies must be subset of parent"**: Admin policy needs `sudo` permission for orphan tokens
2. **Token not found**: Check ExternalSecret and ClusterSecretStore configuration
3. **Permission denied**: Verify `jupyterhub-admin` policy has all required permissions
### Authentication Issues
Verify Keycloak client configuration:
```bash
# Check client exists
just keycloak::get-client buunstack jupyterhub
# Check redirect URIs
just keycloak::update-client buunstack jupyterhub \
"https://your-jupyter-host/hub/oauth_callback"
```
## Technical Implementation Details
### Helm Chart Version
JupyterHub uses the official Zero to JupyterHub (Z2JH) Helm chart:
- Chart: `jupyterhub/jupyterhub`
- Version: `4.2.0` (configurable via `JUPYTERHUB_CHART_VERSION`)
- Documentation: https://z2jh.jupyter.org/
### Token System Architecture
The system uses a three-tier token approach:
1. **Renewable Admin Token**:
- Created with `explicit-max-ttl=0` (unlimited Max TTL)
- Renewed automatically at TTL/2 intervals (minimum 30 seconds)
- Stored in Vault and fetched via ExternalSecret
2. **Orphan User Tokens**:
- Created with `create_orphan()` API call
- Not limited by parent token policies
- Individual TTL and Max TTL settings
3. **Token Renewal Script**:
- Runs as sidecar container
- Reads token from ExternalSecret mount
- Handles renewal and re-retrieval on failure
### Key Files
- `jupyterhub-admin-policy.hcl`: Vault policy with admin permissions
- `user_policy.hcl`: Template for user-specific policies
- `vault-token-renewer.sh`: Token renewal script
- `jupyterhub-vault-token-external-secret.gomplate.yaml`: ExternalSecret configuration
## Performance Considerations
- **Image Size**: Buun-stack images are ~13GB, plan storage accordingly
- **Pull Time**: Initial pulls take 5-15 minutes depending on network
- **Resource Usage**: Data science workloads require adequate CPU/memory
- **Token Renewal**: Minimal overhead (renewal at TTL/2 intervals)
For production deployments, consider:
- Pre-pulling images to all nodes
- Using faster storage backends
- Configuring resource limits per user
- Setting up monitoring and alerts
## Known Limitations
1. **Annual Token Recreation**: While tokens have unlimited Max TTL, best practice suggests recreating them annually
2. **Token Expiry and Pod Lifecycle**: User tokens have a TTL of 1 day (`NOTEBOOK_VAULT_TOKEN_TTL=24h`) and maximum TTL of 7 days (`NOTEBOOK_VAULT_TOKEN_MAX_TTL=168h`). Daily usage extends the token for another day, allowing up to 7 days of continuous use. Server pods are automatically restarted after 7 days (`JUPYTERHUB_CULL_MAX_AGE=604800s`) to refresh tokens.
3. **Cull Settings**: Server idle timeout is set to 2 hours by default. Adjust `cull.timeout` and `cull.every` in the Helm values for different requirements
4. **NFS Storage**: When using NFS storage, ensure proper permissions are set on the NFS server. The default `JUPYTER_FSGID` is 100
5. **ExternalSecret Dependency**: Requires External Secrets Operator to be installed and configured
Please refer to the new location for complete JupyterHub setup, configuration, and usage documentation.

538
docs/resource-management.md Normal file
View File

@@ -0,0 +1,538 @@
# Resource Managementplain
This document describes how to configure resource requests and limits for components in the buun-stack.
## Table of Contents
- [Overview](#overview)
- [QoS Classes](#qos-classes)
- [Using Goldilocks](#using-goldilocks)
- [Configuring Resources](#configuring-resources)
- [Best Practices](#best-practices)
- [Troubleshooting](#troubleshooting)
## Overview
Kubernetes uses resource requests and limits to:
- **Schedule pods** on nodes with sufficient resources
- **Ensure quality of service** through QoS classes
- **Prevent resource exhaustion** by limiting resource consumption
All critical components in buun-stack should have resource requests and limits configured.
## QoS Classes
Kubernetes assigns one of three QoS classes to each pod based on its resource configuration:
### Guaranteed QoS (Highest Priority)
**Requirements:**
- Every container must have CPU and memory requests
- Every container must have CPU and memory limits
- Requests and limits must be **equal** for both CPU and memory
**Characteristics:**
- Highest priority during resource contention
- Last to be evicted when node runs out of resources
- Predictable performance
**Example:**
```yaml
resources:
requests:
cpu: 200mplain
memory: 1Gi
limits:
cpu: 200m # Same as requests
memory: 1Gi # Same as requests
```
**Use for:** Critical data stores (PostgreSQL, Vault)
### Burstable QoS (Medium Priority)
**Requirements:**
- At least one container has requests or limits
- Does not meet Guaranteed QoS criteria
- Typically `requests < limits`
**Characteristics:**
- Medium priority during resource contention
- Can burst to limits when resources are available
- More resource-efficient than Guaranteed
**Example:**
```yaml
resources:
requests:
cpu: 50m
memory: 128Mi
limits:
cpu: 100m # Can burst up to this
memory: 256Mi # Can burst up to this
```
**Use for:** Operators, auxiliary services, variable workloads
### BestEffort QoS (Lowest Priority)
**Requirements:**
- No resource requests or limits configured
**Characteristics:**
- Lowest priority during resource contention
- First to be evicted when node runs out of resources
- **Not recommended for production**
## Using Goldilocks
Goldilocks uses Vertical Pod Autoscaler (VPA) to recommend resource settings based on actual usage.
### Setup
For installation and detailed setup instructions, see:
- [VPA Installation and Configuration](../vpa/README.md)
- [Goldilocks Installation and Configuration](../goldilocks/README.md)
Quick start:
```bash
# Install VPA
just vpa::install
# Install Goldilocks
just goldilocks::install
# Enable monitoring for a namespace
just goldilocks::enable-namespace <namespace>
```
Access the dashboard at your configured Goldilocks host (e.g., `https://goldilocks.example.com`).
### Using the Dashboard
- Navigate to the namespace
- Expand "Containers" section for each workload
- Review both "Guaranteed QoS" and "Burstable QoS" recommendations
### Limitations
Goldilocks only monitors **standard Kubernetes workloads** (Deployment, StatefulSet, DaemonSet). It **does not** automatically create VPAs for:
- Custom Resource Definitions (CRDs)
- Resources managed by operators (e.g., CloudNativePG Cluster)
For CRDs, use alternative methods:
- Check actual usage: `kubectl top pod <pod-name> -n <namespace>`
- Use Grafana dashboards: `Kubernetes / Compute Resources / Pod`
- Monitor over time and adjust based on observed patterns
### Working with Recommendations
#### For Standard Workloads (Supported by Goldilocks)
Review Goldilocks recommendations in the dashboard, then configure resources based on your testing status:
**With load testing:**
- Use Goldilocks recommended values with minimal headroom (1.5-2x)
- Round to clean values (50m, 100m, 200m, 512Mi, 1Gi, etc.)
**Without load testing:**
- Add more headroom to handle unexpected load (3-5x)
- Round to clean values
**Example:**
Goldilocks recommendation: 50m CPU, 128Mi Memory
- With load testing: 100m CPU, 256Mi Memory (2x, rounded)
- Without load testing: 200m CPU, 512Mi Memory (4x, rounded)
#### For CRDs and Unsupported Workloads
Use Grafana to check actual resource usage:
1. **Navigate to Grafana dashboard**: `Kubernetes / Compute Resources / Pod`
2. **Select namespace and pod**
3. **Review usage over 24+ hours** to identify peak values
Then apply the same approach:
**With load testing:**
- Use observed peak values with minimal headroom (1.5-2x)
**Without load testing:**
- Add significant headroom (3-5x) for safety
**Example:**
Grafana shows peak: 40m CPU, 207Mi Memory
- With load testing: 100m CPU, 512Mi Memory (2.5x/2.5x, rounded)
- Without load testing: 200m CPU, 1Gi Memory (5x/5x, rounded, Guaranteed QoS)
## Configuring Resources
### Helm-Managed Components
For components installed via Helm, configure resources in the values file.
#### Example: PostgreSQL Operator (CNPG)
**File:** `postgres/cnpg-values.yaml`
```yaml
resources:
requests:
cpu: 50m
memory: 128Mi
limits:
cpu: 100m
memory: 256Mi
```
**Apply:**
```bash
cd postgres
helm upgrade --install cnpg cnpg/cloudnative-pg --version ${CNPG_CHART_VERSION} \
-n ${CNPG_NAMESPACE} -f cnpg-values.yaml
```
#### Example: Vault
**File:** `vault/vault-values.gomplate.yaml`
```yaml
server:
resources:
requests:
cpu: 50m
memory: 512Mi
limits:
cpu: 50m
memory: 512Mi
injector:
resources:
requests:
cpu: 50m
memory: 128Mi
limits:
cpu: 50m
memory: 128Mi
csi:
enabled: true
agent:
resources:
requests:
cpu: 50m
memory: 128Mi
limits:
cpu: 50m
memory: 128Mi
resources:
requests:
cpu: 50m
memory: 64Mi
limits:
cpu: 50m
memory: 128Mi
```
**Apply:**
```bash
cd vault
gomplate -f vault-values.gomplate.yaml -o vault-values.yaml
helm upgrade vault hashicorp/vault --version ${VAULT_CHART_VERSION} \
-n vault -f vault-values.yaml
```
**Note:** After updating StatefulSet resources, delete the pod to apply changes:
```bash
kubectl delete pod vault-0 -n vault
# Unseal Vault after restart
kubectl exec -n vault vault-0 -- vault operator unseal <UNSEAL_KEY>
```
### CRD-Managed Components
For components managed by Custom Resource Definitions, patch the CRD directly.
#### Example: PostgreSQL Cluster (CloudNativePG)
**Update values file**
**File:** `postgres/postgres-cluster-values.gomplate.yaml`
```yaml
cluster:
instances: 1
# Resource configuration (Guaranteed QoS)
resources:
requests:
cpu: 200m
memory: 1Gi
limits:
cpu: 200m
memory: 1Gi
storage:
size: {{ .Env.POSTGRES_STORAGE_SIZE }}
```
**Apply via justfile:**
```bash
just postgres::create-cluster
```
**Restart pod to apply changes:**
```bash
kubectl delete pod postgres-cluster-1 -n postgres
kubectl wait --for=condition=Ready pod/postgres-cluster-1 -n postgres --timeout=180s
```
**Data Safety:** PostgreSQL data is stored in PersistentVolumeClaim (PVC) and will be preserved during pod restart.
### Verification
After applying resource configurations:
**1. Check resource settings:**
```bash
# For standard workloads
kubectl get deployment <name> -n <namespace> -o jsonpath='{.spec.template.spec.containers[0].resources}' | jq
# For pods
kubectl get pod <pod-name> -n <namespace> -o jsonpath='{.spec.containers[0].resources}' | jq
```
**2. Verify QoS Class:**
```bash
kubectl get pod <pod-name> -n <namespace> -o jsonpath='{.status.qosClass}'
```
**3. Check actual usage:**
```bash
kubectl top pod <pod-name> -n <namespace>
```
## Best Practices
### Choosing QoS Class
| Component Type | Recommended QoS | Rationale |
|---------------|-----------------|-----------|
| **Data stores** (PostgreSQL, Vault) | Guaranteed | Critical services, data integrity, predictable performance |
| **Operators** (CNPG, etc.) | Burstable | Lightweight controllers, occasional spikes |
| **Auxiliary services** (Injectors, CSI providers) | Burstable | Support services, variable load |
### Setting Resource Values
**1. Start with actual usage:**
```bash
# Check current usage
kubectl top pod <pod-name> -n <namespace>
# Check historical usage in Grafana
# Dashboard: Kubernetes / Compute Resources / Pod
```
**2. Add appropriate headroom:**
| Scenario | Recommended Multiplier | Example |
|----------|----------------------|---------|
| Stable, predictable load | 2-3x current usage | Current: 40m → Set: 100m |
| Variable load | 5-10x current usage | Current: 40m → Set: 200m |
| Growth expected | 5-10x current usage | Current: 200Mi → Set: 1Gi |
**3. Use round numbers:**
- CPU: 50m, 100m, 200m, 500m, 1000m (1 core)
- Memory: 64Mi, 128Mi, 256Mi, 512Mi, 1Gi, 2Gi
**4. Monitor and adjust:**
- Check usage patterns after 1-2 weeks
- Adjust based on observed peak usage
- Iterate as workload changes
### Resource Configuration Examples
Based on actual deployments in buun-stack:
```yaml
# PostgreSQL Operator (Burstable)
resources:
requests:
cpu: 50m
memory: 128Mi
limits:
cpu: 100m
memory: 256Mi
# PostgreSQL Cluster (Guaranteed)
resources:
requests:
cpu: 200m
memory: 1Gi
limits:
cpu: 200m
memory: 1Gi
# Vault Server (Guaranteed)
resources:
requests:
cpu: 50m
memory: 512Mi
limits:
cpu: 50m
memory: 512Mi
# Vault Agent Injector (Guaranteed)
resources:
requests:
cpu: 50m
memory: 128Mi
limits:
cpu: 50m
memory: 128Mi
```
## Troubleshooting
### Pod Stuck in Pending State
**Symptom:**
```plain
NAME READY STATUS RESTARTS AGE
my-pod 0/1 Pending 0 5m
```
**Check events:**
```bash
kubectl describe pod <pod-name> -n <namespace> | tail -20
```
**Common causes:**
#### Insufficient resources
```plain
FailedScheduling: 0/1 nodes are available: 1 Insufficient cpu/memory
```
**Solution:** Reduce resource requests or add more nodes
#### Pod anti-affinity
```plain
FailedScheduling: 0/1 nodes are available: 1 node(s) didn't match pod anti-affinity rules
```
**Solution:** Delete old pod to allow new pod to schedule
```bash
kubectl delete pod <old-pod-name> -n <namespace>
```
### OOMKilled (Out of Memory)
**Symptom:**
```plain
NAME READY STATUS RESTARTS AGE
my-pod 0/1 OOMKilled 1 5m
```
**Solution:**
#### Check memory limit is sufficient
```bash
kubectl top pod <pod-name> -n <namespace>
```
#### Increase memory limits
```yaml
resources:
limits:
memory: 2Gi # Increase from 1Gi
```
### Helm Stuck in pending-upgrade
**Symptom:**
```bash
helm status <release> -n <namespace>
# STATUS: pending-upgrade
```
**Solution:**
```bash
# Remove pending release secret
kubectl get secrets -n <namespace> -l owner=helm,name=<release> --sort-by=.metadata.creationTimestamp
kubectl delete secret sh.helm.release.v1.<release>.v<pending-version> -n <namespace>
# Verify status is back to deployed
helm status <release> -n <namespace>
# Re-run upgrade
helm upgrade <release> <chart> -n <namespace> -f values.yaml
```
### VPA Not Providing Recommendations
**Symptom:**
- VPA shows "NoPodsMatched" or "ConfigUnsupported"
- Goldilocks shows empty containers section
**Cause:**
VPA cannot monitor Custom Resource Definitions (CRDs) directly
**Solution:**
Use alternative monitoring methods:
1. kubectl top pod
2. Grafana dashboards
3. Prometheus queries
For CRDs, configure resources manually based on observed usage patterns.
## References
- [Kubernetes Resource Management](https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/)
- [Kubernetes QoS Classes](https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/)
- [Goldilocks Documentation](https://goldilocks.docs.fairwinds.com/)
- [CloudNativePG Resource Management](https://cloudnative-pg.io/documentation/current/resource_management/)

View File

@@ -1,24 +1,146 @@
# JupyterHub
Multi-user platform for interactive computing:
JupyterHub provides a multi-user Jupyter notebook environment with Keycloak OIDC authentication, Vault integration for secure secrets management, and custom kernel images for data science workflows.
- Collaborative Jupyter notebook environment
- Integrated with Keycloak for OIDC authentication
- Persistent storage for user workspaces
- Support for multiple kernels and environments
- Vault integration for secure secrets management
## Table of Contents
See [JupyterHub Documentation](../docs/jupyterhub.md) for detailed setup and configuration.
- [Installation](#installation)
- [Prerequisites](#prerequisites)
- [Access](#access)
- [Kernel Images](#kernel-images)
- [Profile Configuration](#profile-configuration)
- [Buun-Stack Images](#buun-stack-images)
- [buunstack Package & SecretStore](#buunstack-package--secretstore)
- [Vault Integration](#vault-integration)
- [Token Renewal Implementation](#token-renewal-implementation)
- [Storage Options](#storage-options)
- [Configuration](#configuration)
- [Custom Container Images](#custom-container-images)
- [Management](#management)
- [Troubleshooting](#troubleshooting)
- [Technical Implementation Details](#technical-implementation-details)
- [Performance Considerations](#performance-considerations)
- [Known Limitations](#known-limitations)
## Installation
Install JupyterHub with interactive configuration:
```bash
just jupyterhub::install
```
This will prompt for:
- JupyterHub host (FQDN)
- NFS PV usage (if Longhorn is installed)
- NFS server details (if NFS is enabled)
- Vault integration setup (requires root token for initial setup)
## Prerequisites
- Keycloak must be installed and configured
- For NFS storage: Longhorn must be installed
- For Vault integration: Vault and External Secrets Operator must be installed
- Helm repository must be accessible
## Access
Access JupyterHub at `https://jupyter.yourdomain.com` and authenticate via Keycloak.
Access JupyterHub at your configured host (e.g., `https://jupyter.example.com`) and authenticate via Keycloak.
## Kernel Images
### Important Note
Building and using custom buun-stack images requires building the `buunstack` Python package first. The package wheel file will be included in the Docker image during build.
JupyterHub supports multiple kernel image profiles:
### Standard Profiles
- **minimal**: Basic Python environment
- **base**: Python with common data science packages
- **datascience**: Full data science stack (default)
- **pyspark**: PySpark for big data processing
- **pytorch**: PyTorch for machine learning
- **tensorflow**: TensorFlow for machine learning
### Buun-Stack Profiles
- **buun-stack**: Comprehensive data science environment with Vault integration
- **buun-stack-cuda**: CUDA-enabled version with GPU support
## Profile Configuration
Enable/disable profiles using environment variables:
```bash
# Enable buun-stack profile (CPU version)
JUPYTER_PROFILE_BUUN_STACK_ENABLED=true
# Enable buun-stack CUDA profile (GPU version)
JUPYTER_PROFILE_BUUN_STACK_CUDA_ENABLED=true
# Disable default datascience profile
JUPYTER_PROFILE_DATASCIENCE_ENABLED=false
```
Available profile variables:
- `JUPYTER_PROFILE_MINIMAL_ENABLED`
- `JUPYTER_PROFILE_BASE_ENABLED`
- `JUPYTER_PROFILE_DATASCIENCE_ENABLED`
- `JUPYTER_PROFILE_PYSPARK_ENABLED`
- `JUPYTER_PROFILE_PYTORCH_ENABLED`
- `JUPYTER_PROFILE_TENSORFLOW_ENABLED`
- `JUPYTER_PROFILE_BUUN_STACK_ENABLED`
- `JUPYTER_PROFILE_BUUN_STACK_CUDA_ENABLED`
Only `JUPYTER_PROFILE_DATASCIENCE_ENABLED` is true by default.
## Buun-Stack Images
Buun-stack images provide comprehensive data science environments with:
- All standard data science packages (NumPy, Pandas, Scikit-learn, etc.)
- Deep learning frameworks (PyTorch, TensorFlow, Keras)
- Big data tools (PySpark, Apache Arrow)
- NLP and ML libraries (LangChain, Transformers, spaCy)
- Database connectors and tools
- **Vault integration** with `buunstack` Python package
### Building Custom Images
Build and push buun-stack images to your registry:
```bash
# Build images (includes building the buunstack Python package)
just jupyterhub::build-kernel-images
# Push to registry
just jupyterhub::push-kernel-images
```
The build process:
1. Builds the `buunstack` Python package wheel
2. Copies the wheel into the Docker build context
3. Installs the wheel in the Docker image
4. Cleans up temporary files
⚠️ **Note**: Buun-stack images are comprehensive and large (~13GB). Initial image pulls and deployments take significant time due to the extensive package set.
### Image Configuration
Configure image settings in `.env.local`:
```bash
# Image registry
IMAGE_REGISTRY=localhost:30500
# Image tag (current default)
JUPYTER_PYTHON_KERNEL_TAG=python-3.12-28
```
## buunstack Package & SecretStore
@@ -60,6 +182,305 @@ For detailed documentation, usage examples, and API reference, see:
[📖 buunstack Package Documentation](../python-package/README.md)
## Vault Integration
### Overview
Vault integration enables secure secrets management directly from Jupyter notebooks. The system uses:
- **ExternalSecret** to fetch the admin token from Vault
- **Renewable tokens** with unlimited Max TTL to avoid 30-day system limitations
- **Token renewal script** that automatically renews tokens at TTL/2 intervals (minimum 30 seconds)
- **User-specific tokens** created during notebook spawn with isolated access
### Architecture
```plain
┌────────────────────────────────────────────────────────────────┐
│ JupyterHub Hub Pod │
│ │
│ ┌──────────────┐ ┌────────────────┐ ┌────────────────────┐ │
│ │ Hub │ │ Token Renewer │ │ ExternalSecret │ │
│ │ Container │◄─┤ Sidecar │◄─┤ (mounted as │ │
│ │ │ │ │ │ Secret) │ │
│ └──────────────┘ └────────────────┘ └────────────────────┘ │
│ │ │ ▲ │
│ │ │ │ │
│ ▼ ▼ │ │
│ ┌──────────────────────────────────┐ │ │
│ │ /vault/secrets/vault-token │ │ │
│ │ (Admin token for user creation) │ │ │
│ └──────────────────────────────────┘ │ │
└────────────────────────────────────────────────────┼───────────┘
┌───────────▼──────────┐
│ Vault │
│ secret/jupyterhub/ │
│ vault-token │
└──────────────────────┘
```
### Prerequisites
Vault integration requires:
- Vault server installed and configured
- External Secrets Operator installed
- ClusterSecretStore configured for Vault
- Buun-stack kernel images (standard images don't include Vault integration)
### Setup
Vault integration is configured during JupyterHub installation:
```bash
just jupyterhub::install
# Answer "yes" when prompted about Vault integration
# Provide Vault root token when prompted
```
The setup process:
1. Creates `jupyterhub-admin` policy with necessary permissions including `sudo` for orphan token creation
2. Creates renewable admin token with 24h TTL and unlimited Max TTL
3. Stores token in Vault at `secret/jupyterhub/vault-token`
4. Creates ExternalSecret to fetch token from Vault
5. Deploys token renewal sidecar for automatic renewal
### Usage in Notebooks
With Vault integration enabled, use the `buunstack` package in notebooks:
```python
from buunstack import SecretStore
# Initialize (uses pre-acquired user-specific token)
secrets = SecretStore()
# Store secrets
secrets.put('api-keys',
openai='sk-...',
github='ghp_...',
database_url='postgresql://...')
# Retrieve secrets
api_keys = secrets.get('api-keys')
openai_key = secrets.get('api-keys', field='openai')
# List all secrets
secret_names = secrets.list()
# Delete secrets or specific fields
secrets.delete('old-api-key') # Delete entire secret
secrets.delete('api-keys', field='github') # Delete only github field
```
### Security Features
- **User isolation**: Each user receives an orphan token with access only to their namespace
- **Automatic renewal**: Token renewal script renews admin token at TTL/2 intervals (minimum 30 seconds)
- **ExternalSecret integration**: Admin token fetched securely from Vault
- **Orphan tokens**: User tokens are orphan tokens, not limited by parent policy restrictions
- **Audit trail**: All secret access is logged in Vault
### Token Management
#### Admin Token
The admin token is managed through:
1. **Creation**: `just jupyterhub::create-jupyterhub-vault-token` creates renewable token
2. **Storage**: Stored in Vault at `secret/jupyterhub/vault-token`
3. **Retrieval**: ExternalSecret fetches and mounts as Kubernetes Secret
4. **Renewal**: `vault-token-renewer.sh` script renews at TTL/2 intervals
#### User Tokens
User tokens are created dynamically:
1. **Pre-spawn hook** reads admin token from `/vault/secrets/vault-token`
2. **Creates user policy** `jupyter-user-{username}` with restricted access
3. **Creates orphan token** with user policy (requires `sudo` permission)
4. **Sets environment variable** `NOTEBOOK_VAULT_TOKEN` in notebook container
## Token Renewal Implementation
### Admin Token Renewal
The admin token renewal is handled by a sidecar container (`vault-token-renewer`) running alongside the JupyterHub hub:
**Implementation Details:**
1. **Renewal Script**: `/vault/config/vault-token-renewer.sh`
- Runs in the `vault-token-renewer` sidecar container
- Uses Vault 1.17.5 image with HashiCorp Vault CLI
2. **Environment-Based TTL Configuration**:
```bash
# Reads TTL from environment variable (set in .env.local)
TTL_RAW="${JUPYTERHUB_VAULT_TOKEN_TTL}" # e.g., "5m", "24h"
# Converts to seconds and calculates renewal interval
RENEWAL_INTERVAL=$((TTL_SECONDS / 2)) # TTL/2 with minimum 30s
```
3. **Token Source**: ExternalSecret → Kubernetes Secret → mounted file
```bash
# Token retrieved from ExternalSecret-managed mount
ADMIN_TOKEN=$(cat /vault/admin-token/token)
```
4. **Renewal Loop**:
```bash
while true; do
vault token renew >/dev/null 2>&1
sleep $RENEWAL_INTERVAL
done
```
5. **Error Handling**: If renewal fails, re-retrieves token from ExternalSecret mount
**Key Files:**
- `vault-token-renewer.sh`: Main renewal script
- `jupyterhub-vault-token-external-secret.gomplate.yaml`: ExternalSecret configuration
- `vault-token-renewer-config` ConfigMap: Contains the renewal script
### User Token Renewal
User token renewal is handled within the notebook environment by the `buunstack` Python package:
**Implementation Details:**
1. **Token Source**: Environment variable set by pre-spawn hook
```python
# In pre_spawn_hook.gomplate.py
spawner.environment["NOTEBOOK_VAULT_TOKEN"] = user_vault_token
```
2. **Automatic Renewal**: Built into `SecretStore` class operations
```python
# In buunstack/secrets.py
def _ensure_authenticated(self):
token_info = self.client.auth.token.lookup_self()
ttl = token_info.get("data", {}).get("ttl", 0)
renewable = token_info.get("data", {}).get("renewable", False)
# Renew if TTL < 10 minutes and renewable
if renewable and ttl > 0 and ttl < 600:
self.client.auth.token.renew_self()
```
3. **Renewal Trigger**: Every `SecretStore` operation (get, put, delete, list)
- Checks token validity before operation
- Automatically renews if TTL < 10 minutes
- Transparent to user code
4. **Token Configuration** (set during creation):
- **TTL**: `NOTEBOOK_VAULT_TOKEN_TTL` (default: 24h = 1 day)
- **Max TTL**: `NOTEBOOK_VAULT_TOKEN_MAX_TTL` (default: 168h = 7 days)
- **Policy**: User-specific `jupyter-user-{username}`
- **Type**: Orphan token (independent of parent token lifecycle)
5. **Expiry Handling**: When token reaches Max TTL:
- Cannot be renewed further
- User must restart notebook server (triggers new token creation)
- Prevented by `JUPYTERHUB_CULL_MAX_AGE` setting (6 days < 7 day Max TTL)
**Key Files:**
- `pre_spawn_hook.gomplate.py`: User token creation logic
- `buunstack/secrets.py`: Token renewal implementation
- `user_policy.hcl`: User token permissions template
### Token Lifecycle Summary
```plain
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ Admin Token │ │ User Token │ │ Pod Lifecycle │
│ │ │ │ │ │
│ Created: Manual │ │ Created: Spawn │ │ Max Age: 7 days │
│ TTL: 5m-24h │ │ TTL: 1 day │ │ Auto-restart │
│ Max TTL: ∞ │ │ Max TTL: 7 days │ │ at Max TTL │
│ Renewal: Auto │ │ Renewal: Auto │ │ │
│ Interval: TTL/2 │ │ Trigger: Usage │ │ │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│ │ │
▼ ▼ ▼
vault-token-renewer buunstack.py cull.maxAge
sidecar SecretStore pod restart
```
## Storage Options
### Default Storage
Uses Kubernetes PersistentVolumes for user home directories.
### NFS Storage
For shared storage across nodes, configure NFS:
```bash
JUPYTERHUB_NFS_PV_ENABLED=true
JUPYTER_NFS_IP=192.168.10.1
JUPYTER_NFS_PATH=/volume1/drive1/jupyter
```
NFS storage requires:
- Longhorn storage system installed
- NFS server accessible from cluster nodes
- Proper NFS export permissions configured
## Configuration
### Environment Variables
Key configuration variables:
```bash
# Basic settings
JUPYTERHUB_NAMESPACE=jupyter
JUPYTERHUB_CHART_VERSION=4.2.0
JUPYTERHUB_OIDC_CLIENT_ID=jupyterhub
# Keycloak integration
KEYCLOAK_REALM=buunstack
# Storage
JUPYTERHUB_NFS_PV_ENABLED=false
# Vault integration
JUPYTERHUB_VAULT_INTEGRATION_ENABLED=false
VAULT_ADDR=https://vault.example.com
# Image settings
JUPYTER_PYTHON_KERNEL_TAG=python-3.12-28
IMAGE_REGISTRY=localhost:30500
# Vault token TTL settings
JUPYTERHUB_VAULT_TOKEN_TTL=24h # Admin token: renewed at TTL/2 intervals
NOTEBOOK_VAULT_TOKEN_TTL=24h # User token: 1 day (renewed on usage)
NOTEBOOK_VAULT_TOKEN_MAX_TTL=168h # User token: 7 days max
# Server pod lifecycle settings
JUPYTERHUB_CULL_MAX_AGE=604800 # Max pod age in seconds (7 days = 604800s)
# Should be <= NOTEBOOK_VAULT_TOKEN_MAX_TTL
# Logging
JUPYTER_BUUNSTACK_LOG_LEVEL=warning # Options: debug, info, warning, error
```
### Advanced Configuration
Customize JupyterHub behavior by editing `jupyterhub-values.gomplate.yaml` template before installation.
## Custom Container Images
JupyterHub uses custom container images with pre-installed data science tools and integrations:
@@ -88,3 +509,156 @@ GPU-enabled notebook image based on `jupyter/pytorch-notebook:cuda12`:
[📖 See Image Documentation](./images/datastack-cuda-notebook/README.md)
Both images are based on the official [Jupyter Docker Stacks](https://github.com/jupyter/docker-stacks) and include all standard data science libraries (NumPy, pandas, scikit-learn, matplotlib, etc.).
## Management
### Uninstall
```bash
just jupyterhub::uninstall
```
This removes:
- JupyterHub deployment
- User pods
- PVCs
- ExternalSecret
### Update
Upgrade to newer versions:
```bash
# Update image tag in .env.local
export JUPYTER_PYTHON_KERNEL_TAG=python-3.12-29
# Rebuild and push images
just jupyterhub::build-kernel-images
just jupyterhub::push-kernel-images
# Upgrade JupyterHub deployment
just jupyterhub::install
```
### Manual Token Refresh
If needed, manually refresh the admin token:
```bash
# Create new renewable token
just jupyterhub::create-jupyterhub-vault-token
# Restart JupyterHub to pick up new token
kubectl rollout restart deployment/hub -n jupyter
```
## Troubleshooting
### Image Pull Issues
Buun-stack images are large and may timeout:
```bash
# Check pod status
kubectl get pods -n jupyter
# Check image pull progress
kubectl describe pod <pod-name> -n jupyter
# Increase timeout if needed
helm upgrade jupyterhub jupyterhub/jupyterhub --timeout=30m -f jupyterhub-values.yaml
```
### Vault Integration Issues
Check token and authentication:
```bash
# Check ExternalSecret status
kubectl get externalsecret -n jupyter jupyterhub-vault-token
# Check if Secret was created
kubectl get secret -n jupyter jupyterhub-vault-token
# Check token renewal logs
kubectl logs -n jupyter -l app.kubernetes.io/component=hub -c vault-token-renewer
# In a notebook, verify environment
%env NOTEBOOK_VAULT_TOKEN
```
Common issues:
1. **"child policies must be subset of parent"**: Admin policy needs `sudo` permission for orphan tokens
2. **Token not found**: Check ExternalSecret and ClusterSecretStore configuration
3. **Permission denied**: Verify `jupyterhub-admin` policy has all required permissions
### Authentication Issues
Verify Keycloak client configuration:
```bash
# Check client exists
just keycloak::get-client buunstack jupyterhub
# Check redirect URIs
just keycloak::update-client buunstack jupyterhub \
"https://your-jupyter-host/hub/oauth_callback"
```
## Technical Implementation Details
### Helm Chart Version
JupyterHub uses the official Zero to JupyterHub (Z2JH) Helm chart:
- Chart: `jupyterhub/jupyterhub`
- Version: `4.2.0` (configurable via `JUPYTERHUB_CHART_VERSION`)
- Documentation: https://z2jh.jupyter.org/
### Token System Architecture
The system uses a three-tier token approach:
1. **Renewable Admin Token**:
- Created with `explicit-max-ttl=0` (unlimited Max TTL)
- Renewed automatically at TTL/2 intervals (minimum 30 seconds)
- Stored in Vault and fetched via ExternalSecret
2. **Orphan User Tokens**:
- Created with `create_orphan()` API call
- Not limited by parent token policies
- Individual TTL and Max TTL settings
3. **Token Renewal Script**:
- Runs as sidecar container
- Reads token from ExternalSecret mount
- Handles renewal and re-retrieval on failure
### Key Files
- `jupyterhub-admin-policy.hcl`: Vault policy with admin permissions
- `user_policy.hcl`: Template for user-specific policies
- `vault-token-renewer.sh`: Token renewal script
- `jupyterhub-vault-token-external-secret.gomplate.yaml`: ExternalSecret configuration
## Performance Considerations
- **Image Size**: Buun-stack images are ~13GB, plan storage accordingly
- **Pull Time**: Initial pulls take 5-15 minutes depending on network
- **Resource Usage**: Data science workloads require adequate CPU/memory
- **Token Renewal**: Minimal overhead (renewal at TTL/2 intervals)
For production deployments, consider:
- Pre-pulling images to all nodes
- Using faster storage backends
- Configuring resource limits per user
- Setting up monitoring and alerts
## Known Limitations
1. **Annual Token Recreation**: While tokens have unlimited Max TTL, best practice suggests recreating them annually
2. **Token Expiry and Pod Lifecycle**: User tokens have a TTL of 1 day (`NOTEBOOK_VAULT_TOKEN_TTL=24h`) and maximum TTL of 7 days (`NOTEBOOK_VAULT_TOKEN_MAX_TTL=168h`). Daily usage extends the token for another day, allowing up to 7 days of continuous use. Server pods are automatically restarted after 7 days (`JUPYTERHUB_CULL_MAX_AGE=604800s`) to refresh tokens.
3. **Cull Settings**: Server idle timeout is set to 2 hours by default. Adjust `cull.timeout` and `cull.every` in the Helm values for different requirements
4. **NFS Storage**: When using NFS storage, ensure proper permissions are set on the NFS server. The default `JUPYTER_FSGID` is 100
5. **ExternalSecret Dependency**: Requires External Secrets Operator to be installed and configured

View File

@@ -26,7 +26,7 @@ Create `.env.claude` with Trino connection settings:
```bash
# Trino Connection (Password Authentication)
TRINO_HOST=trino.buun.dev
TRINO_HOST=trino.yourdomain.com
TRINO_PORT=443
TRINO_SCHEME=https
TRINO_SSL=true
@@ -75,7 +75,7 @@ Create `~/.env.claude` in your home directory with 1Password references:
```bash
# Trino Connection (Password Authentication)
TRINO_HOST=trino.buun.dev
TRINO_HOST=trino.yourdomain.com
TRINO_PORT=443
TRINO_SCHEME=https
TRINO_SSL=true

View File

@@ -392,7 +392,7 @@ cli user="":
TRINO_HOST="${TRINO_HOST}"
while [ -z "${TRINO_HOST}" ]; do
TRINO_HOST=$(gum input --prompt="Trino host (FQDN): " --width=100 \
--placeholder="e.g., trino.buun.dev")
--placeholder="e.g., trino.yourdomain.com")
done
TRINO_USER="{{ user }}"
if [ -z "${TRINO_USER}" ]; then