docs: reconstruct docs
This commit is contained in:
34
CLAUDE.md
34
CLAUDE.md
@@ -159,6 +159,7 @@ install:
|
||||
```
|
||||
|
||||
ServiceMonitor template (`servicemonitor.gomplate.yaml`):
|
||||
|
||||
```yaml
|
||||
{{- if eq .Env.MONITORING_ENABLED "true" }}
|
||||
apiVersion: monitoring.coreos.com/v1
|
||||
@@ -366,3 +367,36 @@ receiving
|
||||
- Only write code comments when necessary, as the code should be self-explanatory
|
||||
(Avoid trivial comment for each code block)
|
||||
- Write output messages and code comments in English
|
||||
|
||||
### Markdown Style
|
||||
|
||||
When writing Markdown documentation:
|
||||
|
||||
1. **NEVER use ordered lists as section headers**:
|
||||
- Ordered lists indent content and are not suitable for headings
|
||||
- Use proper heading levels (####) instead of numbered lists for section titles
|
||||
|
||||
```markdown
|
||||
<!-- INCORRECT: Ordered list used as headers -->
|
||||
1. **Setup Instructions:**
|
||||
|
||||
Details here...
|
||||
|
||||
2. **Next Step:**
|
||||
|
||||
More details...
|
||||
|
||||
<!-- CORRECT: Use headings instead -->
|
||||
#### Setup Instructions
|
||||
|
||||
Details here...
|
||||
|
||||
#### Next Step
|
||||
|
||||
More details...
|
||||
```
|
||||
|
||||
2. **Always validate with markdownlint-cli2**:
|
||||
- Run `markdownlint-cli2 <file>` before committing any Markdown files
|
||||
- Fix all linting errors to ensure consistent formatting
|
||||
- Pay attention to code block language specifications (MD040) and list formatting (MD029)
|
||||
|
||||
@@ -46,7 +46,7 @@ This document covers Airflow installation, deployment, and debugging in the buun
|
||||
**Note**: New users have only Viewer access by default and cannot execute DAGs without role assignment.
|
||||
|
||||
4. **Access Airflow Web UI**:
|
||||
- Navigate to your Airflow instance (e.g., `https://airflow.buun.dev`)
|
||||
- Navigate to your Airflow instance (e.g., `https://airflow.yourdomain.com`)
|
||||
- Login with your Keycloak credentials
|
||||
|
||||
### Uninstalling
|
||||
@@ -63,7 +63,7 @@ just airflow::uninstall true
|
||||
|
||||
### 1. Access JupyterHub
|
||||
|
||||
- Navigate to your JupyterHub instance (e.g., `https://jupyter.buun.dev`)
|
||||
- Navigate to your JupyterHub instance (e.g., `https://jupyter.yourdomain.com`)
|
||||
- Login with your credentials
|
||||
|
||||
### 2. Navigate to Airflow DAGs Directory
|
||||
@@ -82,7 +82,7 @@ In JupyterHub, the Airflow DAGs directory is mounted at:
|
||||
|
||||
### 4. Verify Deployment
|
||||
|
||||
1. Access Airflow Web UI (e.g., `https://airflow.buun.dev`)
|
||||
1. Access Airflow Web UI (e.g., `https://airflow.yourdomain.com`)
|
||||
2. Check that the DAG `csv_to_postgres` appears in the DAGs list
|
||||
3. If the DAG doesn't appear immediately, wait 1-2 minutes for Airflow to detect the new file
|
||||
|
||||
|
||||
@@ -28,7 +28,7 @@ This document covers Dagster installation, deployment, and debugging in the buun
|
||||
```
|
||||
|
||||
3. **Access Dagster Web UI**:
|
||||
- Navigate to your Dagster instance (e.g., `https://dagster.buun.dev`)
|
||||
- Navigate to your Dagster instance (e.g., `https://dagster.yourdomain.com`)
|
||||
- Login with your Keycloak credentials
|
||||
|
||||
### Uninstalling
|
||||
|
||||
@@ -1,577 +1,5 @@
|
||||
# JupyterHub
|
||||
# JupyterHub Documentation
|
||||
|
||||
JupyterHub provides a multi-user Jupyter notebook environment with Keycloak OIDC authentication, Vault integration for secure secrets management, and custom kernel images for data science workflows.
|
||||
This documentation has been moved to [jupyterhub/README.md](../jupyterhub/README.md).
|
||||
|
||||
## Installation
|
||||
|
||||
Install JupyterHub with interactive configuration:
|
||||
|
||||
```bash
|
||||
just jupyterhub::install
|
||||
```
|
||||
|
||||
This will prompt for:
|
||||
|
||||
- JupyterHub host (FQDN)
|
||||
- NFS PV usage (if Longhorn is installed)
|
||||
- NFS server details (if NFS is enabled)
|
||||
- Vault integration setup (requires root token for initial setup)
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- Keycloak must be installed and configured
|
||||
- For NFS storage: Longhorn must be installed
|
||||
- For Vault integration: Vault and External Secrets Operator must be installed
|
||||
- Helm repository must be accessible
|
||||
|
||||
## Kernel Images
|
||||
|
||||
### Important Note
|
||||
|
||||
Building and using custom buun-stack images requires building the `buunstack` Python package first. The package wheel file will be included in the Docker image during build.
|
||||
|
||||
JupyterHub supports multiple kernel image profiles:
|
||||
|
||||
### Standard Profiles
|
||||
|
||||
- **minimal**: Basic Python environment
|
||||
- **base**: Python with common data science packages
|
||||
- **datascience**: Full data science stack (default)
|
||||
- **pyspark**: PySpark for big data processing
|
||||
- **pytorch**: PyTorch for machine learning
|
||||
- **tensorflow**: TensorFlow for machine learning
|
||||
|
||||
### Buun-Stack Profiles
|
||||
|
||||
- **buun-stack**: Comprehensive data science environment with Vault integration
|
||||
- **buun-stack-cuda**: CUDA-enabled version with GPU support
|
||||
|
||||
## Profile Configuration
|
||||
|
||||
Enable/disable profiles using environment variables:
|
||||
|
||||
```bash
|
||||
# Enable buun-stack profile (CPU version)
|
||||
JUPYTER_PROFILE_BUUN_STACK_ENABLED=true
|
||||
|
||||
# Enable buun-stack CUDA profile (GPU version)
|
||||
JUPYTER_PROFILE_BUUN_STACK_CUDA_ENABLED=true
|
||||
|
||||
# Disable default datascience profile
|
||||
JUPYTER_PROFILE_DATASCIENCE_ENABLED=false
|
||||
```
|
||||
|
||||
Available profile variables:
|
||||
|
||||
- `JUPYTER_PROFILE_MINIMAL_ENABLED`
|
||||
- `JUPYTER_PROFILE_BASE_ENABLED`
|
||||
- `JUPYTER_PROFILE_DATASCIENCE_ENABLED`
|
||||
- `JUPYTER_PROFILE_PYSPARK_ENABLED`
|
||||
- `JUPYTER_PROFILE_PYTORCH_ENABLED`
|
||||
- `JUPYTER_PROFILE_TENSORFLOW_ENABLED`
|
||||
- `JUPYTER_PROFILE_BUUN_STACK_ENABLED`
|
||||
- `JUPYTER_PROFILE_BUUN_STACK_CUDA_ENABLED`
|
||||
|
||||
Only `JUPYTER_PROFILE_DATASCIENCE_ENABLED` is true by default.
|
||||
|
||||
## Buun-Stack Images
|
||||
|
||||
Buun-stack images provide comprehensive data science environments with:
|
||||
|
||||
- All standard data science packages (NumPy, Pandas, Scikit-learn, etc.)
|
||||
- Deep learning frameworks (PyTorch, TensorFlow, Keras)
|
||||
- Big data tools (PySpark, Apache Arrow)
|
||||
- NLP and ML libraries (LangChain, Transformers, spaCy)
|
||||
- Database connectors and tools
|
||||
- **Vault integration** with `buunstack` Python package
|
||||
|
||||
### Building Custom Images
|
||||
|
||||
Build and push buun-stack images to your registry:
|
||||
|
||||
```bash
|
||||
# Build images (includes building the buunstack Python package)
|
||||
just jupyterhub::build-kernel-images
|
||||
|
||||
# Push to registry
|
||||
just jupyterhub::push-kernel-images
|
||||
```
|
||||
|
||||
The build process:
|
||||
|
||||
1. Builds the `buunstack` Python package wheel
|
||||
2. Copies the wheel into the Docker build context
|
||||
3. Installs the wheel in the Docker image
|
||||
4. Cleans up temporary files
|
||||
|
||||
⚠️ **Note**: Buun-stack images are comprehensive and large (~13GB). Initial image pulls and deployments take significant time due to the extensive package set.
|
||||
|
||||
### Image Configuration
|
||||
|
||||
Configure image settings in `.env.local`:
|
||||
|
||||
```bash
|
||||
# Image registry
|
||||
IMAGE_REGISTRY=localhost:30500
|
||||
|
||||
# Image tag (current default)
|
||||
JUPYTER_PYTHON_KERNEL_TAG=python-3.12-28
|
||||
```
|
||||
|
||||
## Vault Integration
|
||||
|
||||
### Overview
|
||||
|
||||
Vault integration enables secure secrets management directly from Jupyter notebooks. The system uses:
|
||||
|
||||
- **ExternalSecret** to fetch the admin token from Vault
|
||||
- **Renewable tokens** with unlimited Max TTL to avoid 30-day system limitations
|
||||
- **Token renewal script** that automatically renews tokens at TTL/2 intervals (minimum 30 seconds)
|
||||
- **User-specific tokens** created during notebook spawn with isolated access
|
||||
|
||||
### Architecture
|
||||
|
||||
```plain
|
||||
┌────────────────────────────────────────────────────────────────┐
|
||||
│ JupyterHub Hub Pod │
|
||||
│ │
|
||||
│ ┌──────────────┐ ┌────────────────┐ ┌────────────────────┐ │
|
||||
│ │ Hub │ │ Token Renewer │ │ ExternalSecret │ │
|
||||
│ │ Container │◄─┤ Sidecar │◄─┤ (mounted as │ │
|
||||
│ │ │ │ │ │ Secret) │ │
|
||||
│ └──────────────┘ └────────────────┘ └────────────────────┘ │
|
||||
│ │ │ ▲ │
|
||||
│ │ │ │ │
|
||||
│ ▼ ▼ │ │
|
||||
│ ┌──────────────────────────────────┐ │ │
|
||||
│ │ /vault/secrets/vault-token │ │ │
|
||||
│ │ (Admin token for user creation) │ │ │
|
||||
│ └──────────────────────────────────┘ │ │
|
||||
└────────────────────────────────────────────────────┼───────────┘
|
||||
│
|
||||
┌───────────▼──────────┐
|
||||
│ Vault │
|
||||
│ secret/jupyterhub/ │
|
||||
│ vault-token │
|
||||
└──────────────────────┘
|
||||
```
|
||||
|
||||
### Prerequisites
|
||||
|
||||
Vault integration requires:
|
||||
|
||||
- Vault server installed and configured
|
||||
- External Secrets Operator installed
|
||||
- ClusterSecretStore configured for Vault
|
||||
- Buun-stack kernel images (standard images don't include Vault integration)
|
||||
|
||||
### Setup
|
||||
|
||||
Vault integration is configured during JupyterHub installation:
|
||||
|
||||
```bash
|
||||
just jupyterhub::install
|
||||
# Answer "yes" when prompted about Vault integration
|
||||
# Provide Vault root token when prompted
|
||||
```
|
||||
|
||||
The setup process:
|
||||
|
||||
1. Creates `jupyterhub-admin` policy with necessary permissions including `sudo` for orphan token creation
|
||||
2. Creates renewable admin token with 24h TTL and unlimited Max TTL
|
||||
3. Stores token in Vault at `secret/jupyterhub/vault-token`
|
||||
4. Creates ExternalSecret to fetch token from Vault
|
||||
5. Deploys token renewal sidecar for automatic renewal
|
||||
|
||||
### Usage in Notebooks
|
||||
|
||||
With Vault integration enabled, use the `buunstack` package in notebooks:
|
||||
|
||||
```python
|
||||
from buunstack import SecretStore
|
||||
|
||||
# Initialize (uses pre-acquired user-specific token)
|
||||
secrets = SecretStore()
|
||||
|
||||
# Store secrets
|
||||
secrets.put('api-keys',
|
||||
openai='sk-...',
|
||||
github='ghp_...',
|
||||
database_url='postgresql://...')
|
||||
|
||||
# Retrieve secrets
|
||||
api_keys = secrets.get('api-keys')
|
||||
openai_key = secrets.get('api-keys', field='openai')
|
||||
|
||||
# List all secrets
|
||||
secret_names = secrets.list()
|
||||
|
||||
# Delete secrets or specific fields
|
||||
secrets.delete('old-api-key') # Delete entire secret
|
||||
secrets.delete('api-keys', field='github') # Delete only github field
|
||||
```
|
||||
|
||||
### Security Features
|
||||
|
||||
- **User isolation**: Each user receives an orphan token with access only to their namespace
|
||||
- **Automatic renewal**: Token renewal script renews admin token at TTL/2 intervals (minimum 30 seconds)
|
||||
- **ExternalSecret integration**: Admin token fetched securely from Vault
|
||||
- **Orphan tokens**: User tokens are orphan tokens, not limited by parent policy restrictions
|
||||
- **Audit trail**: All secret access is logged in Vault
|
||||
|
||||
### Token Management
|
||||
|
||||
#### Admin Token
|
||||
|
||||
The admin token is managed through:
|
||||
|
||||
1. **Creation**: `just jupyterhub::create-jupyterhub-vault-token` creates renewable token
|
||||
2. **Storage**: Stored in Vault at `secret/jupyterhub/vault-token`
|
||||
3. **Retrieval**: ExternalSecret fetches and mounts as Kubernetes Secret
|
||||
4. **Renewal**: `vault-token-renewer.sh` script renews at TTL/2 intervals
|
||||
|
||||
#### User Tokens
|
||||
|
||||
User tokens are created dynamically:
|
||||
|
||||
1. **Pre-spawn hook** reads admin token from `/vault/secrets/vault-token`
|
||||
2. **Creates user policy** `jupyter-user-{username}` with restricted access
|
||||
3. **Creates orphan token** with user policy (requires `sudo` permission)
|
||||
4. **Sets environment variable** `NOTEBOOK_VAULT_TOKEN` in notebook container
|
||||
|
||||
## Token Renewal Implementation
|
||||
|
||||
### Admin Token Renewal
|
||||
|
||||
The admin token renewal is handled by a sidecar container (`vault-token-renewer`) running alongside the JupyterHub hub:
|
||||
|
||||
**Implementation Details:**
|
||||
|
||||
1. **Renewal Script**: `/vault/config/vault-token-renewer.sh`
|
||||
- Runs in the `vault-token-renewer` sidecar container
|
||||
- Uses Vault 1.17.5 image with HashiCorp Vault CLI
|
||||
|
||||
2. **Environment-Based TTL Configuration**:
|
||||
|
||||
```bash
|
||||
# Reads TTL from environment variable (set in .env.local)
|
||||
TTL_RAW="${JUPYTERHUB_VAULT_TOKEN_TTL}" # e.g., "5m", "24h"
|
||||
|
||||
# Converts to seconds and calculates renewal interval
|
||||
RENEWAL_INTERVAL=$((TTL_SECONDS / 2)) # TTL/2 with minimum 30s
|
||||
```
|
||||
|
||||
3. **Token Source**: ExternalSecret → Kubernetes Secret → mounted file
|
||||
|
||||
```bash
|
||||
# Token retrieved from ExternalSecret-managed mount
|
||||
ADMIN_TOKEN=$(cat /vault/admin-token/token)
|
||||
```
|
||||
|
||||
4. **Renewal Loop**:
|
||||
|
||||
```bash
|
||||
while true; do
|
||||
vault token renew >/dev/null 2>&1
|
||||
sleep $RENEWAL_INTERVAL
|
||||
done
|
||||
```
|
||||
|
||||
5. **Error Handling**: If renewal fails, re-retrieves token from ExternalSecret mount
|
||||
|
||||
**Key Files:**
|
||||
|
||||
- `vault-token-renewer.sh`: Main renewal script
|
||||
- `jupyterhub-vault-token-external-secret.gomplate.yaml`: ExternalSecret configuration
|
||||
- `vault-token-renewer-config` ConfigMap: Contains the renewal script
|
||||
|
||||
### User Token Renewal
|
||||
|
||||
User token renewal is handled within the notebook environment by the `buunstack` Python package:
|
||||
|
||||
**Implementation Details:**
|
||||
|
||||
1. **Token Source**: Environment variable set by pre-spawn hook
|
||||
|
||||
```python
|
||||
# In pre_spawn_hook.gomplate.py
|
||||
spawner.environment["NOTEBOOK_VAULT_TOKEN"] = user_vault_token
|
||||
```
|
||||
|
||||
2. **Automatic Renewal**: Built into `SecretStore` class operations
|
||||
|
||||
```python
|
||||
# In buunstack/secrets.py
|
||||
def _ensure_authenticated(self):
|
||||
token_info = self.client.auth.token.lookup_self()
|
||||
ttl = token_info.get("data", {}).get("ttl", 0)
|
||||
renewable = token_info.get("data", {}).get("renewable", False)
|
||||
|
||||
# Renew if TTL < 10 minutes and renewable
|
||||
if renewable and ttl > 0 and ttl < 600:
|
||||
self.client.auth.token.renew_self()
|
||||
```
|
||||
|
||||
3. **Renewal Trigger**: Every `SecretStore` operation (get, put, delete, list)
|
||||
- Checks token validity before operation
|
||||
- Automatically renews if TTL < 10 minutes
|
||||
- Transparent to user code
|
||||
|
||||
4. **Token Configuration** (set during creation):
|
||||
- **TTL**: `NOTEBOOK_VAULT_TOKEN_TTL` (default: 24h = 1 day)
|
||||
- **Max TTL**: `NOTEBOOK_VAULT_TOKEN_MAX_TTL` (default: 168h = 7 days)
|
||||
- **Policy**: User-specific `jupyter-user-{username}`
|
||||
- **Type**: Orphan token (independent of parent token lifecycle)
|
||||
|
||||
5. **Expiry Handling**: When token reaches Max TTL:
|
||||
- Cannot be renewed further
|
||||
- User must restart notebook server (triggers new token creation)
|
||||
- Prevented by `JUPYTERHUB_CULL_MAX_AGE` setting (6 days < 7 day Max TTL)
|
||||
|
||||
**Key Files:**
|
||||
|
||||
- `pre_spawn_hook.gomplate.py`: User token creation logic
|
||||
- `buunstack/secrets.py`: Token renewal implementation
|
||||
- `user_policy.hcl`: User token permissions template
|
||||
|
||||
### Token Lifecycle Summary
|
||||
|
||||
```
|
||||
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
|
||||
│ Admin Token │ │ User Token │ │ Pod Lifecycle │
|
||||
│ │ │ │ │ │
|
||||
│ Created: Manual │ │ Created: Spawn │ │ Max Age: 7 days │
|
||||
│ TTL: 5m-24h │ │ TTL: 1 day │ │ Auto-restart │
|
||||
│ Max TTL: ∞ │ │ Max TTL: 7 days │ │ at Max TTL │
|
||||
│ Renewal: Auto │ │ Renewal: Auto │ │ │
|
||||
│ Interval: TTL/2 │ │ Trigger: Usage │ │ │
|
||||
└─────────────────┘ └──────────────────┘ └─────────────────┘
|
||||
│ │ │
|
||||
▼ ▼ ▼
|
||||
vault-token-renewer buunstack.py cull.maxAge
|
||||
sidecar SecretStore pod restart
|
||||
```
|
||||
|
||||
## Storage Options
|
||||
|
||||
### Default Storage
|
||||
|
||||
Uses Kubernetes PersistentVolumes for user home directories.
|
||||
|
||||
### NFS Storage
|
||||
|
||||
For shared storage across nodes, configure NFS:
|
||||
|
||||
```bash
|
||||
JUPYTERHUB_NFS_PV_ENABLED=true
|
||||
JUPYTER_NFS_IP=192.168.10.1
|
||||
JUPYTER_NFS_PATH=/volume1/drive1/jupyter
|
||||
```
|
||||
|
||||
NFS storage requires:
|
||||
|
||||
- Longhorn storage system installed
|
||||
- NFS server accessible from cluster nodes
|
||||
- Proper NFS export permissions configured
|
||||
|
||||
## Configuration
|
||||
|
||||
### Environment Variables
|
||||
|
||||
Key configuration variables:
|
||||
|
||||
```bash
|
||||
# Basic settings
|
||||
JUPYTERHUB_NAMESPACE=jupyter
|
||||
JUPYTERHUB_CHART_VERSION=4.2.0
|
||||
JUPYTERHUB_OIDC_CLIENT_ID=jupyterhub
|
||||
|
||||
# Keycloak integration
|
||||
KEYCLOAK_REALM=buunstack
|
||||
|
||||
# Storage
|
||||
JUPYTERHUB_NFS_PV_ENABLED=false
|
||||
|
||||
# Vault integration
|
||||
JUPYTERHUB_VAULT_INTEGRATION_ENABLED=false
|
||||
VAULT_ADDR=https://vault.example.com
|
||||
|
||||
# Image settings
|
||||
JUPYTER_PYTHON_KERNEL_TAG=python-3.12-28
|
||||
IMAGE_REGISTRY=localhost:30500
|
||||
|
||||
# Vault token TTL settings
|
||||
JUPYTERHUB_VAULT_TOKEN_TTL=24h # Admin token: renewed at TTL/2 intervals
|
||||
NOTEBOOK_VAULT_TOKEN_TTL=24h # User token: 1 day (renewed on usage)
|
||||
NOTEBOOK_VAULT_TOKEN_MAX_TTL=168h # User token: 7 days max
|
||||
|
||||
# Server pod lifecycle settings
|
||||
JUPYTERHUB_CULL_MAX_AGE=604800 # Max pod age in seconds (7 days = 604800s)
|
||||
# Should be <= NOTEBOOK_VAULT_TOKEN_MAX_TTL
|
||||
|
||||
# Logging
|
||||
JUPYTER_BUUNSTACK_LOG_LEVEL=warning # Options: debug, info, warning, error
|
||||
```
|
||||
|
||||
### Advanced Configuration
|
||||
|
||||
Customize JupyterHub behavior by editing `jupyterhub-values.gomplate.yaml` template before installation.
|
||||
|
||||
## Management
|
||||
|
||||
### Uninstall
|
||||
|
||||
```bash
|
||||
just jupyterhub::uninstall
|
||||
```
|
||||
|
||||
This removes:
|
||||
|
||||
- JupyterHub deployment
|
||||
- User pods
|
||||
- PVCs
|
||||
- ExternalSecret
|
||||
|
||||
### Update
|
||||
|
||||
Upgrade to newer versions:
|
||||
|
||||
```bash
|
||||
# Update image tag in .env.local
|
||||
export JUPYTER_PYTHON_KERNEL_TAG=python-3.12-29
|
||||
|
||||
# Rebuild and push images
|
||||
just jupyterhub::build-kernel-images
|
||||
just jupyterhub::push-kernel-images
|
||||
|
||||
# Upgrade JupyterHub deployment
|
||||
just jupyterhub::install
|
||||
```
|
||||
|
||||
### Manual Token Refresh
|
||||
|
||||
If needed, manually refresh the admin token:
|
||||
|
||||
```bash
|
||||
# Create new renewable token
|
||||
just jupyterhub::create-jupyterhub-vault-token
|
||||
|
||||
# Restart JupyterHub to pick up new token
|
||||
kubectl rollout restart deployment/hub -n jupyter
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Image Pull Issues
|
||||
|
||||
Buun-stack images are large and may timeout:
|
||||
|
||||
```bash
|
||||
# Check pod status
|
||||
kubectl get pods -n jupyter
|
||||
|
||||
# Check image pull progress
|
||||
kubectl describe pod <pod-name> -n jupyter
|
||||
|
||||
# Increase timeout if needed
|
||||
helm upgrade jupyterhub jupyterhub/jupyterhub --timeout=30m -f jupyterhub-values.yaml
|
||||
```
|
||||
|
||||
### Vault Integration Issues
|
||||
|
||||
Check token and authentication:
|
||||
|
||||
```bash
|
||||
# Check ExternalSecret status
|
||||
kubectl get externalsecret -n jupyter jupyterhub-vault-token
|
||||
|
||||
# Check if Secret was created
|
||||
kubectl get secret -n jupyter jupyterhub-vault-token
|
||||
|
||||
# Check token renewal logs
|
||||
kubectl logs -n jupyter -l app.kubernetes.io/component=hub -c vault-token-renewer
|
||||
|
||||
# In a notebook, verify environment
|
||||
%env NOTEBOOK_VAULT_TOKEN
|
||||
```
|
||||
|
||||
Common issues:
|
||||
|
||||
1. **"child policies must be subset of parent"**: Admin policy needs `sudo` permission for orphan tokens
|
||||
2. **Token not found**: Check ExternalSecret and ClusterSecretStore configuration
|
||||
3. **Permission denied**: Verify `jupyterhub-admin` policy has all required permissions
|
||||
|
||||
### Authentication Issues
|
||||
|
||||
Verify Keycloak client configuration:
|
||||
|
||||
```bash
|
||||
# Check client exists
|
||||
just keycloak::get-client buunstack jupyterhub
|
||||
|
||||
# Check redirect URIs
|
||||
just keycloak::update-client buunstack jupyterhub \
|
||||
"https://your-jupyter-host/hub/oauth_callback"
|
||||
```
|
||||
|
||||
## Technical Implementation Details
|
||||
|
||||
### Helm Chart Version
|
||||
|
||||
JupyterHub uses the official Zero to JupyterHub (Z2JH) Helm chart:
|
||||
|
||||
- Chart: `jupyterhub/jupyterhub`
|
||||
- Version: `4.2.0` (configurable via `JUPYTERHUB_CHART_VERSION`)
|
||||
- Documentation: https://z2jh.jupyter.org/
|
||||
|
||||
### Token System Architecture
|
||||
|
||||
The system uses a three-tier token approach:
|
||||
|
||||
1. **Renewable Admin Token**:
|
||||
- Created with `explicit-max-ttl=0` (unlimited Max TTL)
|
||||
- Renewed automatically at TTL/2 intervals (minimum 30 seconds)
|
||||
- Stored in Vault and fetched via ExternalSecret
|
||||
|
||||
2. **Orphan User Tokens**:
|
||||
- Created with `create_orphan()` API call
|
||||
- Not limited by parent token policies
|
||||
- Individual TTL and Max TTL settings
|
||||
|
||||
3. **Token Renewal Script**:
|
||||
- Runs as sidecar container
|
||||
- Reads token from ExternalSecret mount
|
||||
- Handles renewal and re-retrieval on failure
|
||||
|
||||
### Key Files
|
||||
|
||||
- `jupyterhub-admin-policy.hcl`: Vault policy with admin permissions
|
||||
- `user_policy.hcl`: Template for user-specific policies
|
||||
- `vault-token-renewer.sh`: Token renewal script
|
||||
- `jupyterhub-vault-token-external-secret.gomplate.yaml`: ExternalSecret configuration
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
- **Image Size**: Buun-stack images are ~13GB, plan storage accordingly
|
||||
- **Pull Time**: Initial pulls take 5-15 minutes depending on network
|
||||
- **Resource Usage**: Data science workloads require adequate CPU/memory
|
||||
- **Token Renewal**: Minimal overhead (renewal at TTL/2 intervals)
|
||||
|
||||
For production deployments, consider:
|
||||
|
||||
- Pre-pulling images to all nodes
|
||||
- Using faster storage backends
|
||||
- Configuring resource limits per user
|
||||
- Setting up monitoring and alerts
|
||||
|
||||
## Known Limitations
|
||||
|
||||
1. **Annual Token Recreation**: While tokens have unlimited Max TTL, best practice suggests recreating them annually
|
||||
|
||||
2. **Token Expiry and Pod Lifecycle**: User tokens have a TTL of 1 day (`NOTEBOOK_VAULT_TOKEN_TTL=24h`) and maximum TTL of 7 days (`NOTEBOOK_VAULT_TOKEN_MAX_TTL=168h`). Daily usage extends the token for another day, allowing up to 7 days of continuous use. Server pods are automatically restarted after 7 days (`JUPYTERHUB_CULL_MAX_AGE=604800s`) to refresh tokens.
|
||||
|
||||
3. **Cull Settings**: Server idle timeout is set to 2 hours by default. Adjust `cull.timeout` and `cull.every` in the Helm values for different requirements
|
||||
|
||||
4. **NFS Storage**: When using NFS storage, ensure proper permissions are set on the NFS server. The default `JUPYTER_FSGID` is 100
|
||||
|
||||
5. **ExternalSecret Dependency**: Requires External Secrets Operator to be installed and configured
|
||||
Please refer to the new location for complete JupyterHub setup, configuration, and usage documentation.
|
||||
|
||||
538
docs/resource-management.md
Normal file
538
docs/resource-management.md
Normal file
@@ -0,0 +1,538 @@
|
||||
# Resource Managementplain
|
||||
|
||||
This document describes how to configure resource requests and limits for components in the buun-stack.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [Overview](#overview)
|
||||
- [QoS Classes](#qos-classes)
|
||||
- [Using Goldilocks](#using-goldilocks)
|
||||
- [Configuring Resources](#configuring-resources)
|
||||
- [Best Practices](#best-practices)
|
||||
- [Troubleshooting](#troubleshooting)
|
||||
|
||||
## Overview
|
||||
|
||||
Kubernetes uses resource requests and limits to:
|
||||
|
||||
- **Schedule pods** on nodes with sufficient resources
|
||||
- **Ensure quality of service** through QoS classes
|
||||
- **Prevent resource exhaustion** by limiting resource consumption
|
||||
|
||||
All critical components in buun-stack should have resource requests and limits configured.
|
||||
|
||||
## QoS Classes
|
||||
|
||||
Kubernetes assigns one of three QoS classes to each pod based on its resource configuration:
|
||||
|
||||
### Guaranteed QoS (Highest Priority)
|
||||
|
||||
**Requirements:**
|
||||
|
||||
- Every container must have CPU and memory requests
|
||||
- Every container must have CPU and memory limits
|
||||
- Requests and limits must be **equal** for both CPU and memory
|
||||
|
||||
**Characteristics:**
|
||||
|
||||
- Highest priority during resource contention
|
||||
- Last to be evicted when node runs out of resources
|
||||
- Predictable performance
|
||||
|
||||
**Example:**
|
||||
|
||||
```yaml
|
||||
resources:
|
||||
requests:
|
||||
cpu: 200mplain
|
||||
memory: 1Gi
|
||||
limits:
|
||||
cpu: 200m # Same as requests
|
||||
memory: 1Gi # Same as requests
|
||||
```
|
||||
|
||||
**Use for:** Critical data stores (PostgreSQL, Vault)
|
||||
|
||||
### Burstable QoS (Medium Priority)
|
||||
|
||||
**Requirements:**
|
||||
|
||||
- At least one container has requests or limits
|
||||
- Does not meet Guaranteed QoS criteria
|
||||
- Typically `requests < limits`
|
||||
|
||||
**Characteristics:**
|
||||
|
||||
- Medium priority during resource contention
|
||||
- Can burst to limits when resources are available
|
||||
- More resource-efficient than Guaranteed
|
||||
|
||||
**Example:**
|
||||
|
||||
```yaml
|
||||
resources:
|
||||
requests:
|
||||
cpu: 50m
|
||||
memory: 128Mi
|
||||
limits:
|
||||
cpu: 100m # Can burst up to this
|
||||
memory: 256Mi # Can burst up to this
|
||||
```
|
||||
|
||||
**Use for:** Operators, auxiliary services, variable workloads
|
||||
|
||||
### BestEffort QoS (Lowest Priority)
|
||||
|
||||
**Requirements:**
|
||||
|
||||
- No resource requests or limits configured
|
||||
|
||||
**Characteristics:**
|
||||
|
||||
- Lowest priority during resource contention
|
||||
- First to be evicted when node runs out of resources
|
||||
- **Not recommended for production**
|
||||
|
||||
## Using Goldilocks
|
||||
|
||||
Goldilocks uses Vertical Pod Autoscaler (VPA) to recommend resource settings based on actual usage.
|
||||
|
||||
### Setup
|
||||
|
||||
For installation and detailed setup instructions, see:
|
||||
|
||||
- [VPA Installation and Configuration](../vpa/README.md)
|
||||
- [Goldilocks Installation and Configuration](../goldilocks/README.md)
|
||||
|
||||
Quick start:
|
||||
|
||||
```bash
|
||||
# Install VPA
|
||||
just vpa::install
|
||||
|
||||
# Install Goldilocks
|
||||
just goldilocks::install
|
||||
|
||||
# Enable monitoring for a namespace
|
||||
just goldilocks::enable-namespace <namespace>
|
||||
```
|
||||
|
||||
Access the dashboard at your configured Goldilocks host (e.g., `https://goldilocks.example.com`).
|
||||
|
||||
### Using the Dashboard
|
||||
|
||||
- Navigate to the namespace
|
||||
- Expand "Containers" section for each workload
|
||||
- Review both "Guaranteed QoS" and "Burstable QoS" recommendations
|
||||
|
||||
### Limitations
|
||||
|
||||
Goldilocks only monitors **standard Kubernetes workloads** (Deployment, StatefulSet, DaemonSet). It **does not** automatically create VPAs for:
|
||||
|
||||
- Custom Resource Definitions (CRDs)
|
||||
- Resources managed by operators (e.g., CloudNativePG Cluster)
|
||||
|
||||
For CRDs, use alternative methods:
|
||||
|
||||
- Check actual usage: `kubectl top pod <pod-name> -n <namespace>`
|
||||
- Use Grafana dashboards: `Kubernetes / Compute Resources / Pod`
|
||||
- Monitor over time and adjust based on observed patterns
|
||||
|
||||
### Working with Recommendations
|
||||
|
||||
#### For Standard Workloads (Supported by Goldilocks)
|
||||
|
||||
Review Goldilocks recommendations in the dashboard, then configure resources based on your testing status:
|
||||
|
||||
**With load testing:**
|
||||
|
||||
- Use Goldilocks recommended values with minimal headroom (1.5-2x)
|
||||
- Round to clean values (50m, 100m, 200m, 512Mi, 1Gi, etc.)
|
||||
|
||||
**Without load testing:**
|
||||
|
||||
- Add more headroom to handle unexpected load (3-5x)
|
||||
- Round to clean values
|
||||
|
||||
**Example:**
|
||||
|
||||
Goldilocks recommendation: 50m CPU, 128Mi Memory
|
||||
|
||||
- With load testing: 100m CPU, 256Mi Memory (2x, rounded)
|
||||
- Without load testing: 200m CPU, 512Mi Memory (4x, rounded)
|
||||
|
||||
#### For CRDs and Unsupported Workloads
|
||||
|
||||
Use Grafana to check actual resource usage:
|
||||
|
||||
1. **Navigate to Grafana dashboard**: `Kubernetes / Compute Resources / Pod`
|
||||
2. **Select namespace and pod**
|
||||
3. **Review usage over 24+ hours** to identify peak values
|
||||
|
||||
Then apply the same approach:
|
||||
|
||||
**With load testing:**
|
||||
|
||||
- Use observed peak values with minimal headroom (1.5-2x)
|
||||
|
||||
**Without load testing:**
|
||||
|
||||
- Add significant headroom (3-5x) for safety
|
||||
|
||||
**Example:**
|
||||
|
||||
Grafana shows peak: 40m CPU, 207Mi Memory
|
||||
|
||||
- With load testing: 100m CPU, 512Mi Memory (2.5x/2.5x, rounded)
|
||||
- Without load testing: 200m CPU, 1Gi Memory (5x/5x, rounded, Guaranteed QoS)
|
||||
|
||||
## Configuring Resources
|
||||
|
||||
### Helm-Managed Components
|
||||
|
||||
For components installed via Helm, configure resources in the values file.
|
||||
|
||||
#### Example: PostgreSQL Operator (CNPG)
|
||||
|
||||
**File:** `postgres/cnpg-values.yaml`
|
||||
|
||||
```yaml
|
||||
resources:
|
||||
requests:
|
||||
cpu: 50m
|
||||
memory: 128Mi
|
||||
limits:
|
||||
cpu: 100m
|
||||
memory: 256Mi
|
||||
```
|
||||
|
||||
**Apply:**
|
||||
|
||||
```bash
|
||||
cd postgres
|
||||
helm upgrade --install cnpg cnpg/cloudnative-pg --version ${CNPG_CHART_VERSION} \
|
||||
-n ${CNPG_NAMESPACE} -f cnpg-values.yaml
|
||||
```
|
||||
|
||||
#### Example: Vault
|
||||
|
||||
**File:** `vault/vault-values.gomplate.yaml`
|
||||
|
||||
```yaml
|
||||
server:
|
||||
resources:
|
||||
requests:
|
||||
cpu: 50m
|
||||
memory: 512Mi
|
||||
limits:
|
||||
cpu: 50m
|
||||
memory: 512Mi
|
||||
|
||||
injector:
|
||||
resources:
|
||||
requests:
|
||||
cpu: 50m
|
||||
memory: 128Mi
|
||||
limits:
|
||||
cpu: 50m
|
||||
memory: 128Mi
|
||||
|
||||
csi:
|
||||
enabled: true
|
||||
agent:
|
||||
resources:
|
||||
requests:
|
||||
cpu: 50m
|
||||
memory: 128Mi
|
||||
limits:
|
||||
cpu: 50m
|
||||
memory: 128Mi
|
||||
resources:
|
||||
requests:
|
||||
cpu: 50m
|
||||
memory: 64Mi
|
||||
limits:
|
||||
cpu: 50m
|
||||
memory: 128Mi
|
||||
```
|
||||
|
||||
**Apply:**
|
||||
|
||||
```bash
|
||||
cd vault
|
||||
gomplate -f vault-values.gomplate.yaml -o vault-values.yaml
|
||||
helm upgrade vault hashicorp/vault --version ${VAULT_CHART_VERSION} \
|
||||
-n vault -f vault-values.yaml
|
||||
```
|
||||
|
||||
**Note:** After updating StatefulSet resources, delete the pod to apply changes:
|
||||
|
||||
```bash
|
||||
kubectl delete pod vault-0 -n vault
|
||||
# Unseal Vault after restart
|
||||
kubectl exec -n vault vault-0 -- vault operator unseal <UNSEAL_KEY>
|
||||
```
|
||||
|
||||
### CRD-Managed Components
|
||||
|
||||
For components managed by Custom Resource Definitions, patch the CRD directly.
|
||||
|
||||
#### Example: PostgreSQL Cluster (CloudNativePG)
|
||||
|
||||
**Update values file**
|
||||
|
||||
**File:** `postgres/postgres-cluster-values.gomplate.yaml`
|
||||
|
||||
```yaml
|
||||
cluster:
|
||||
instances: 1
|
||||
|
||||
# Resource configuration (Guaranteed QoS)
|
||||
resources:
|
||||
requests:
|
||||
cpu: 200m
|
||||
memory: 1Gi
|
||||
limits:
|
||||
cpu: 200m
|
||||
memory: 1Gi
|
||||
|
||||
storage:
|
||||
size: {{ .Env.POSTGRES_STORAGE_SIZE }}
|
||||
```
|
||||
|
||||
**Apply via justfile:**
|
||||
|
||||
```bash
|
||||
just postgres::create-cluster
|
||||
```
|
||||
|
||||
**Restart pod to apply changes:**
|
||||
|
||||
```bash
|
||||
kubectl delete pod postgres-cluster-1 -n postgres
|
||||
kubectl wait --for=condition=Ready pod/postgres-cluster-1 -n postgres --timeout=180s
|
||||
```
|
||||
|
||||
**Data Safety:** PostgreSQL data is stored in PersistentVolumeClaim (PVC) and will be preserved during pod restart.
|
||||
|
||||
### Verification
|
||||
|
||||
After applying resource configurations:
|
||||
|
||||
**1. Check resource settings:**
|
||||
|
||||
```bash
|
||||
# For standard workloads
|
||||
kubectl get deployment <name> -n <namespace> -o jsonpath='{.spec.template.spec.containers[0].resources}' | jq
|
||||
|
||||
# For pods
|
||||
kubectl get pod <pod-name> -n <namespace> -o jsonpath='{.spec.containers[0].resources}' | jq
|
||||
```
|
||||
|
||||
**2. Verify QoS Class:**
|
||||
|
||||
```bash
|
||||
kubectl get pod <pod-name> -n <namespace> -o jsonpath='{.status.qosClass}'
|
||||
```
|
||||
|
||||
**3. Check actual usage:**
|
||||
|
||||
```bash
|
||||
kubectl top pod <pod-name> -n <namespace>
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
### Choosing QoS Class
|
||||
|
||||
| Component Type | Recommended QoS | Rationale |
|
||||
|---------------|-----------------|-----------|
|
||||
| **Data stores** (PostgreSQL, Vault) | Guaranteed | Critical services, data integrity, predictable performance |
|
||||
| **Operators** (CNPG, etc.) | Burstable | Lightweight controllers, occasional spikes |
|
||||
| **Auxiliary services** (Injectors, CSI providers) | Burstable | Support services, variable load |
|
||||
|
||||
### Setting Resource Values
|
||||
|
||||
**1. Start with actual usage:**
|
||||
|
||||
```bash
|
||||
# Check current usage
|
||||
kubectl top pod <pod-name> -n <namespace>
|
||||
|
||||
# Check historical usage in Grafana
|
||||
# Dashboard: Kubernetes / Compute Resources / Pod
|
||||
```
|
||||
|
||||
**2. Add appropriate headroom:**
|
||||
|
||||
| Scenario | Recommended Multiplier | Example |
|
||||
|----------|----------------------|---------|
|
||||
| Stable, predictable load | 2-3x current usage | Current: 40m → Set: 100m |
|
||||
| Variable load | 5-10x current usage | Current: 40m → Set: 200m |
|
||||
| Growth expected | 5-10x current usage | Current: 200Mi → Set: 1Gi |
|
||||
|
||||
**3. Use round numbers:**
|
||||
|
||||
- CPU: 50m, 100m, 200m, 500m, 1000m (1 core)
|
||||
- Memory: 64Mi, 128Mi, 256Mi, 512Mi, 1Gi, 2Gi
|
||||
|
||||
**4. Monitor and adjust:**
|
||||
|
||||
- Check usage patterns after 1-2 weeks
|
||||
- Adjust based on observed peak usage
|
||||
- Iterate as workload changes
|
||||
|
||||
### Resource Configuration Examples
|
||||
|
||||
Based on actual deployments in buun-stack:
|
||||
|
||||
```yaml
|
||||
# PostgreSQL Operator (Burstable)
|
||||
resources:
|
||||
requests:
|
||||
cpu: 50m
|
||||
memory: 128Mi
|
||||
limits:
|
||||
cpu: 100m
|
||||
memory: 256Mi
|
||||
|
||||
# PostgreSQL Cluster (Guaranteed)
|
||||
resources:
|
||||
requests:
|
||||
cpu: 200m
|
||||
memory: 1Gi
|
||||
limits:
|
||||
cpu: 200m
|
||||
memory: 1Gi
|
||||
|
||||
# Vault Server (Guaranteed)
|
||||
resources:
|
||||
requests:
|
||||
cpu: 50m
|
||||
memory: 512Mi
|
||||
limits:
|
||||
cpu: 50m
|
||||
memory: 512Mi
|
||||
|
||||
# Vault Agent Injector (Guaranteed)
|
||||
resources:
|
||||
requests:
|
||||
cpu: 50m
|
||||
memory: 128Mi
|
||||
limits:
|
||||
cpu: 50m
|
||||
memory: 128Mi
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Pod Stuck in Pending State
|
||||
|
||||
**Symptom:**
|
||||
|
||||
```plain
|
||||
NAME READY STATUS RESTARTS AGE
|
||||
my-pod 0/1 Pending 0 5m
|
||||
```
|
||||
|
||||
**Check events:**
|
||||
|
||||
```bash
|
||||
kubectl describe pod <pod-name> -n <namespace> | tail -20
|
||||
```
|
||||
|
||||
**Common causes:**
|
||||
|
||||
#### Insufficient resources
|
||||
|
||||
```plain
|
||||
FailedScheduling: 0/1 nodes are available: 1 Insufficient cpu/memory
|
||||
```
|
||||
|
||||
**Solution:** Reduce resource requests or add more nodes
|
||||
|
||||
#### Pod anti-affinity
|
||||
|
||||
```plain
|
||||
FailedScheduling: 0/1 nodes are available: 1 node(s) didn't match pod anti-affinity rules
|
||||
```
|
||||
|
||||
**Solution:** Delete old pod to allow new pod to schedule
|
||||
|
||||
```bash
|
||||
kubectl delete pod <old-pod-name> -n <namespace>
|
||||
```
|
||||
|
||||
### OOMKilled (Out of Memory)
|
||||
|
||||
**Symptom:**
|
||||
|
||||
```plain
|
||||
NAME READY STATUS RESTARTS AGE
|
||||
my-pod 0/1 OOMKilled 1 5m
|
||||
```
|
||||
|
||||
**Solution:**
|
||||
|
||||
#### Check memory limit is sufficient
|
||||
|
||||
```bash
|
||||
kubectl top pod <pod-name> -n <namespace>
|
||||
```
|
||||
|
||||
#### Increase memory limits
|
||||
|
||||
```yaml
|
||||
resources:
|
||||
limits:
|
||||
memory: 2Gi # Increase from 1Gi
|
||||
```
|
||||
|
||||
### Helm Stuck in pending-upgrade
|
||||
|
||||
**Symptom:**
|
||||
|
||||
```bash
|
||||
helm status <release> -n <namespace>
|
||||
# STATUS: pending-upgrade
|
||||
```
|
||||
|
||||
**Solution:**
|
||||
|
||||
```bash
|
||||
# Remove pending release secret
|
||||
kubectl get secrets -n <namespace> -l owner=helm,name=<release> --sort-by=.metadata.creationTimestamp
|
||||
kubectl delete secret sh.helm.release.v1.<release>.v<pending-version> -n <namespace>
|
||||
|
||||
# Verify status is back to deployed
|
||||
helm status <release> -n <namespace>
|
||||
|
||||
# Re-run upgrade
|
||||
helm upgrade <release> <chart> -n <namespace> -f values.yaml
|
||||
```
|
||||
|
||||
### VPA Not Providing Recommendations
|
||||
|
||||
**Symptom:**
|
||||
|
||||
- VPA shows "NoPodsMatched" or "ConfigUnsupported"
|
||||
- Goldilocks shows empty containers section
|
||||
|
||||
**Cause:**
|
||||
VPA cannot monitor Custom Resource Definitions (CRDs) directly
|
||||
|
||||
**Solution:**
|
||||
Use alternative monitoring methods:
|
||||
|
||||
1. kubectl top pod
|
||||
2. Grafana dashboards
|
||||
3. Prometheus queries
|
||||
|
||||
For CRDs, configure resources manually based on observed usage patterns.
|
||||
|
||||
## References
|
||||
|
||||
- [Kubernetes Resource Management](https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/)
|
||||
- [Kubernetes QoS Classes](https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/)
|
||||
- [Goldilocks Documentation](https://goldilocks.docs.fairwinds.com/)
|
||||
- [CloudNativePG Resource Management](https://cloudnative-pg.io/documentation/current/resource_management/)
|
||||
@@ -1,24 +1,146 @@
|
||||
# JupyterHub
|
||||
|
||||
Multi-user platform for interactive computing:
|
||||
JupyterHub provides a multi-user Jupyter notebook environment with Keycloak OIDC authentication, Vault integration for secure secrets management, and custom kernel images for data science workflows.
|
||||
|
||||
- Collaborative Jupyter notebook environment
|
||||
- Integrated with Keycloak for OIDC authentication
|
||||
- Persistent storage for user workspaces
|
||||
- Support for multiple kernels and environments
|
||||
- Vault integration for secure secrets management
|
||||
## Table of Contents
|
||||
|
||||
See [JupyterHub Documentation](../docs/jupyterhub.md) for detailed setup and configuration.
|
||||
- [Installation](#installation)
|
||||
- [Prerequisites](#prerequisites)
|
||||
- [Access](#access)
|
||||
- [Kernel Images](#kernel-images)
|
||||
- [Profile Configuration](#profile-configuration)
|
||||
- [Buun-Stack Images](#buun-stack-images)
|
||||
- [buunstack Package & SecretStore](#buunstack-package--secretstore)
|
||||
- [Vault Integration](#vault-integration)
|
||||
- [Token Renewal Implementation](#token-renewal-implementation)
|
||||
- [Storage Options](#storage-options)
|
||||
- [Configuration](#configuration)
|
||||
- [Custom Container Images](#custom-container-images)
|
||||
- [Management](#management)
|
||||
- [Troubleshooting](#troubleshooting)
|
||||
- [Technical Implementation Details](#technical-implementation-details)
|
||||
- [Performance Considerations](#performance-considerations)
|
||||
- [Known Limitations](#known-limitations)
|
||||
|
||||
## Installation
|
||||
|
||||
Install JupyterHub with interactive configuration:
|
||||
|
||||
```bash
|
||||
just jupyterhub::install
|
||||
```
|
||||
|
||||
This will prompt for:
|
||||
|
||||
- JupyterHub host (FQDN)
|
||||
- NFS PV usage (if Longhorn is installed)
|
||||
- NFS server details (if NFS is enabled)
|
||||
- Vault integration setup (requires root token for initial setup)
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- Keycloak must be installed and configured
|
||||
- For NFS storage: Longhorn must be installed
|
||||
- For Vault integration: Vault and External Secrets Operator must be installed
|
||||
- Helm repository must be accessible
|
||||
|
||||
## Access
|
||||
|
||||
Access JupyterHub at `https://jupyter.yourdomain.com` and authenticate via Keycloak.
|
||||
Access JupyterHub at your configured host (e.g., `https://jupyter.example.com`) and authenticate via Keycloak.
|
||||
|
||||
## Kernel Images
|
||||
|
||||
### Important Note
|
||||
|
||||
Building and using custom buun-stack images requires building the `buunstack` Python package first. The package wheel file will be included in the Docker image during build.
|
||||
|
||||
JupyterHub supports multiple kernel image profiles:
|
||||
|
||||
### Standard Profiles
|
||||
|
||||
- **minimal**: Basic Python environment
|
||||
- **base**: Python with common data science packages
|
||||
- **datascience**: Full data science stack (default)
|
||||
- **pyspark**: PySpark for big data processing
|
||||
- **pytorch**: PyTorch for machine learning
|
||||
- **tensorflow**: TensorFlow for machine learning
|
||||
|
||||
### Buun-Stack Profiles
|
||||
|
||||
- **buun-stack**: Comprehensive data science environment with Vault integration
|
||||
- **buun-stack-cuda**: CUDA-enabled version with GPU support
|
||||
|
||||
## Profile Configuration
|
||||
|
||||
Enable/disable profiles using environment variables:
|
||||
|
||||
```bash
|
||||
# Enable buun-stack profile (CPU version)
|
||||
JUPYTER_PROFILE_BUUN_STACK_ENABLED=true
|
||||
|
||||
# Enable buun-stack CUDA profile (GPU version)
|
||||
JUPYTER_PROFILE_BUUN_STACK_CUDA_ENABLED=true
|
||||
|
||||
# Disable default datascience profile
|
||||
JUPYTER_PROFILE_DATASCIENCE_ENABLED=false
|
||||
```
|
||||
|
||||
Available profile variables:
|
||||
|
||||
- `JUPYTER_PROFILE_MINIMAL_ENABLED`
|
||||
- `JUPYTER_PROFILE_BASE_ENABLED`
|
||||
- `JUPYTER_PROFILE_DATASCIENCE_ENABLED`
|
||||
- `JUPYTER_PROFILE_PYSPARK_ENABLED`
|
||||
- `JUPYTER_PROFILE_PYTORCH_ENABLED`
|
||||
- `JUPYTER_PROFILE_TENSORFLOW_ENABLED`
|
||||
- `JUPYTER_PROFILE_BUUN_STACK_ENABLED`
|
||||
- `JUPYTER_PROFILE_BUUN_STACK_CUDA_ENABLED`
|
||||
|
||||
Only `JUPYTER_PROFILE_DATASCIENCE_ENABLED` is true by default.
|
||||
|
||||
## Buun-Stack Images
|
||||
|
||||
Buun-stack images provide comprehensive data science environments with:
|
||||
|
||||
- All standard data science packages (NumPy, Pandas, Scikit-learn, etc.)
|
||||
- Deep learning frameworks (PyTorch, TensorFlow, Keras)
|
||||
- Big data tools (PySpark, Apache Arrow)
|
||||
- NLP and ML libraries (LangChain, Transformers, spaCy)
|
||||
- Database connectors and tools
|
||||
- **Vault integration** with `buunstack` Python package
|
||||
|
||||
### Building Custom Images
|
||||
|
||||
Build and push buun-stack images to your registry:
|
||||
|
||||
```bash
|
||||
# Build images (includes building the buunstack Python package)
|
||||
just jupyterhub::build-kernel-images
|
||||
|
||||
# Push to registry
|
||||
just jupyterhub::push-kernel-images
|
||||
```
|
||||
|
||||
The build process:
|
||||
|
||||
1. Builds the `buunstack` Python package wheel
|
||||
2. Copies the wheel into the Docker build context
|
||||
3. Installs the wheel in the Docker image
|
||||
4. Cleans up temporary files
|
||||
|
||||
⚠️ **Note**: Buun-stack images are comprehensive and large (~13GB). Initial image pulls and deployments take significant time due to the extensive package set.
|
||||
|
||||
### Image Configuration
|
||||
|
||||
Configure image settings in `.env.local`:
|
||||
|
||||
```bash
|
||||
# Image registry
|
||||
IMAGE_REGISTRY=localhost:30500
|
||||
|
||||
# Image tag (current default)
|
||||
JUPYTER_PYTHON_KERNEL_TAG=python-3.12-28
|
||||
```
|
||||
|
||||
## buunstack Package & SecretStore
|
||||
|
||||
@@ -60,6 +182,305 @@ For detailed documentation, usage examples, and API reference, see:
|
||||
|
||||
[📖 buunstack Package Documentation](../python-package/README.md)
|
||||
|
||||
## Vault Integration
|
||||
|
||||
### Overview
|
||||
|
||||
Vault integration enables secure secrets management directly from Jupyter notebooks. The system uses:
|
||||
|
||||
- **ExternalSecret** to fetch the admin token from Vault
|
||||
- **Renewable tokens** with unlimited Max TTL to avoid 30-day system limitations
|
||||
- **Token renewal script** that automatically renews tokens at TTL/2 intervals (minimum 30 seconds)
|
||||
- **User-specific tokens** created during notebook spawn with isolated access
|
||||
|
||||
### Architecture
|
||||
|
||||
```plain
|
||||
┌────────────────────────────────────────────────────────────────┐
|
||||
│ JupyterHub Hub Pod │
|
||||
│ │
|
||||
│ ┌──────────────┐ ┌────────────────┐ ┌────────────────────┐ │
|
||||
│ │ Hub │ │ Token Renewer │ │ ExternalSecret │ │
|
||||
│ │ Container │◄─┤ Sidecar │◄─┤ (mounted as │ │
|
||||
│ │ │ │ │ │ Secret) │ │
|
||||
│ └──────────────┘ └────────────────┘ └────────────────────┘ │
|
||||
│ │ │ ▲ │
|
||||
│ │ │ │ │
|
||||
│ ▼ ▼ │ │
|
||||
│ ┌──────────────────────────────────┐ │ │
|
||||
│ │ /vault/secrets/vault-token │ │ │
|
||||
│ │ (Admin token for user creation) │ │ │
|
||||
│ └──────────────────────────────────┘ │ │
|
||||
└────────────────────────────────────────────────────┼───────────┘
|
||||
│
|
||||
┌───────────▼──────────┐
|
||||
│ Vault │
|
||||
│ secret/jupyterhub/ │
|
||||
│ vault-token │
|
||||
└──────────────────────┘
|
||||
```
|
||||
|
||||
### Prerequisites
|
||||
|
||||
Vault integration requires:
|
||||
|
||||
- Vault server installed and configured
|
||||
- External Secrets Operator installed
|
||||
- ClusterSecretStore configured for Vault
|
||||
- Buun-stack kernel images (standard images don't include Vault integration)
|
||||
|
||||
### Setup
|
||||
|
||||
Vault integration is configured during JupyterHub installation:
|
||||
|
||||
```bash
|
||||
just jupyterhub::install
|
||||
# Answer "yes" when prompted about Vault integration
|
||||
# Provide Vault root token when prompted
|
||||
```
|
||||
|
||||
The setup process:
|
||||
|
||||
1. Creates `jupyterhub-admin` policy with necessary permissions including `sudo` for orphan token creation
|
||||
2. Creates renewable admin token with 24h TTL and unlimited Max TTL
|
||||
3. Stores token in Vault at `secret/jupyterhub/vault-token`
|
||||
4. Creates ExternalSecret to fetch token from Vault
|
||||
5. Deploys token renewal sidecar for automatic renewal
|
||||
|
||||
### Usage in Notebooks
|
||||
|
||||
With Vault integration enabled, use the `buunstack` package in notebooks:
|
||||
|
||||
```python
|
||||
from buunstack import SecretStore
|
||||
|
||||
# Initialize (uses pre-acquired user-specific token)
|
||||
secrets = SecretStore()
|
||||
|
||||
# Store secrets
|
||||
secrets.put('api-keys',
|
||||
openai='sk-...',
|
||||
github='ghp_...',
|
||||
database_url='postgresql://...')
|
||||
|
||||
# Retrieve secrets
|
||||
api_keys = secrets.get('api-keys')
|
||||
openai_key = secrets.get('api-keys', field='openai')
|
||||
|
||||
# List all secrets
|
||||
secret_names = secrets.list()
|
||||
|
||||
# Delete secrets or specific fields
|
||||
secrets.delete('old-api-key') # Delete entire secret
|
||||
secrets.delete('api-keys', field='github') # Delete only github field
|
||||
```
|
||||
|
||||
### Security Features
|
||||
|
||||
- **User isolation**: Each user receives an orphan token with access only to their namespace
|
||||
- **Automatic renewal**: Token renewal script renews admin token at TTL/2 intervals (minimum 30 seconds)
|
||||
- **ExternalSecret integration**: Admin token fetched securely from Vault
|
||||
- **Orphan tokens**: User tokens are orphan tokens, not limited by parent policy restrictions
|
||||
- **Audit trail**: All secret access is logged in Vault
|
||||
|
||||
### Token Management
|
||||
|
||||
#### Admin Token
|
||||
|
||||
The admin token is managed through:
|
||||
|
||||
1. **Creation**: `just jupyterhub::create-jupyterhub-vault-token` creates renewable token
|
||||
2. **Storage**: Stored in Vault at `secret/jupyterhub/vault-token`
|
||||
3. **Retrieval**: ExternalSecret fetches and mounts as Kubernetes Secret
|
||||
4. **Renewal**: `vault-token-renewer.sh` script renews at TTL/2 intervals
|
||||
|
||||
#### User Tokens
|
||||
|
||||
User tokens are created dynamically:
|
||||
|
||||
1. **Pre-spawn hook** reads admin token from `/vault/secrets/vault-token`
|
||||
2. **Creates user policy** `jupyter-user-{username}` with restricted access
|
||||
3. **Creates orphan token** with user policy (requires `sudo` permission)
|
||||
4. **Sets environment variable** `NOTEBOOK_VAULT_TOKEN` in notebook container
|
||||
|
||||
## Token Renewal Implementation
|
||||
|
||||
### Admin Token Renewal
|
||||
|
||||
The admin token renewal is handled by a sidecar container (`vault-token-renewer`) running alongside the JupyterHub hub:
|
||||
|
||||
**Implementation Details:**
|
||||
|
||||
1. **Renewal Script**: `/vault/config/vault-token-renewer.sh`
|
||||
- Runs in the `vault-token-renewer` sidecar container
|
||||
- Uses Vault 1.17.5 image with HashiCorp Vault CLI
|
||||
|
||||
2. **Environment-Based TTL Configuration**:
|
||||
|
||||
```bash
|
||||
# Reads TTL from environment variable (set in .env.local)
|
||||
TTL_RAW="${JUPYTERHUB_VAULT_TOKEN_TTL}" # e.g., "5m", "24h"
|
||||
|
||||
# Converts to seconds and calculates renewal interval
|
||||
RENEWAL_INTERVAL=$((TTL_SECONDS / 2)) # TTL/2 with minimum 30s
|
||||
```
|
||||
|
||||
3. **Token Source**: ExternalSecret → Kubernetes Secret → mounted file
|
||||
|
||||
```bash
|
||||
# Token retrieved from ExternalSecret-managed mount
|
||||
ADMIN_TOKEN=$(cat /vault/admin-token/token)
|
||||
```
|
||||
|
||||
4. **Renewal Loop**:
|
||||
|
||||
```bash
|
||||
while true; do
|
||||
vault token renew >/dev/null 2>&1
|
||||
sleep $RENEWAL_INTERVAL
|
||||
done
|
||||
```
|
||||
|
||||
5. **Error Handling**: If renewal fails, re-retrieves token from ExternalSecret mount
|
||||
|
||||
**Key Files:**
|
||||
|
||||
- `vault-token-renewer.sh`: Main renewal script
|
||||
- `jupyterhub-vault-token-external-secret.gomplate.yaml`: ExternalSecret configuration
|
||||
- `vault-token-renewer-config` ConfigMap: Contains the renewal script
|
||||
|
||||
### User Token Renewal
|
||||
|
||||
User token renewal is handled within the notebook environment by the `buunstack` Python package:
|
||||
|
||||
**Implementation Details:**
|
||||
|
||||
1. **Token Source**: Environment variable set by pre-spawn hook
|
||||
|
||||
```python
|
||||
# In pre_spawn_hook.gomplate.py
|
||||
spawner.environment["NOTEBOOK_VAULT_TOKEN"] = user_vault_token
|
||||
```
|
||||
|
||||
2. **Automatic Renewal**: Built into `SecretStore` class operations
|
||||
|
||||
```python
|
||||
# In buunstack/secrets.py
|
||||
def _ensure_authenticated(self):
|
||||
token_info = self.client.auth.token.lookup_self()
|
||||
ttl = token_info.get("data", {}).get("ttl", 0)
|
||||
renewable = token_info.get("data", {}).get("renewable", False)
|
||||
|
||||
# Renew if TTL < 10 minutes and renewable
|
||||
if renewable and ttl > 0 and ttl < 600:
|
||||
self.client.auth.token.renew_self()
|
||||
```
|
||||
|
||||
3. **Renewal Trigger**: Every `SecretStore` operation (get, put, delete, list)
|
||||
- Checks token validity before operation
|
||||
- Automatically renews if TTL < 10 minutes
|
||||
- Transparent to user code
|
||||
|
||||
4. **Token Configuration** (set during creation):
|
||||
- **TTL**: `NOTEBOOK_VAULT_TOKEN_TTL` (default: 24h = 1 day)
|
||||
- **Max TTL**: `NOTEBOOK_VAULT_TOKEN_MAX_TTL` (default: 168h = 7 days)
|
||||
- **Policy**: User-specific `jupyter-user-{username}`
|
||||
- **Type**: Orphan token (independent of parent token lifecycle)
|
||||
|
||||
5. **Expiry Handling**: When token reaches Max TTL:
|
||||
- Cannot be renewed further
|
||||
- User must restart notebook server (triggers new token creation)
|
||||
- Prevented by `JUPYTERHUB_CULL_MAX_AGE` setting (6 days < 7 day Max TTL)
|
||||
|
||||
**Key Files:**
|
||||
|
||||
- `pre_spawn_hook.gomplate.py`: User token creation logic
|
||||
- `buunstack/secrets.py`: Token renewal implementation
|
||||
- `user_policy.hcl`: User token permissions template
|
||||
|
||||
### Token Lifecycle Summary
|
||||
|
||||
```plain
|
||||
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
|
||||
│ Admin Token │ │ User Token │ │ Pod Lifecycle │
|
||||
│ │ │ │ │ │
|
||||
│ Created: Manual │ │ Created: Spawn │ │ Max Age: 7 days │
|
||||
│ TTL: 5m-24h │ │ TTL: 1 day │ │ Auto-restart │
|
||||
│ Max TTL: ∞ │ │ Max TTL: 7 days │ │ at Max TTL │
|
||||
│ Renewal: Auto │ │ Renewal: Auto │ │ │
|
||||
│ Interval: TTL/2 │ │ Trigger: Usage │ │ │
|
||||
└─────────────────┘ └──────────────────┘ └─────────────────┘
|
||||
│ │ │
|
||||
▼ ▼ ▼
|
||||
vault-token-renewer buunstack.py cull.maxAge
|
||||
sidecar SecretStore pod restart
|
||||
```
|
||||
|
||||
## Storage Options
|
||||
|
||||
### Default Storage
|
||||
|
||||
Uses Kubernetes PersistentVolumes for user home directories.
|
||||
|
||||
### NFS Storage
|
||||
|
||||
For shared storage across nodes, configure NFS:
|
||||
|
||||
```bash
|
||||
JUPYTERHUB_NFS_PV_ENABLED=true
|
||||
JUPYTER_NFS_IP=192.168.10.1
|
||||
JUPYTER_NFS_PATH=/volume1/drive1/jupyter
|
||||
```
|
||||
|
||||
NFS storage requires:
|
||||
|
||||
- Longhorn storage system installed
|
||||
- NFS server accessible from cluster nodes
|
||||
- Proper NFS export permissions configured
|
||||
|
||||
## Configuration
|
||||
|
||||
### Environment Variables
|
||||
|
||||
Key configuration variables:
|
||||
|
||||
```bash
|
||||
# Basic settings
|
||||
JUPYTERHUB_NAMESPACE=jupyter
|
||||
JUPYTERHUB_CHART_VERSION=4.2.0
|
||||
JUPYTERHUB_OIDC_CLIENT_ID=jupyterhub
|
||||
|
||||
# Keycloak integration
|
||||
KEYCLOAK_REALM=buunstack
|
||||
|
||||
# Storage
|
||||
JUPYTERHUB_NFS_PV_ENABLED=false
|
||||
|
||||
# Vault integration
|
||||
JUPYTERHUB_VAULT_INTEGRATION_ENABLED=false
|
||||
VAULT_ADDR=https://vault.example.com
|
||||
|
||||
# Image settings
|
||||
JUPYTER_PYTHON_KERNEL_TAG=python-3.12-28
|
||||
IMAGE_REGISTRY=localhost:30500
|
||||
|
||||
# Vault token TTL settings
|
||||
JUPYTERHUB_VAULT_TOKEN_TTL=24h # Admin token: renewed at TTL/2 intervals
|
||||
NOTEBOOK_VAULT_TOKEN_TTL=24h # User token: 1 day (renewed on usage)
|
||||
NOTEBOOK_VAULT_TOKEN_MAX_TTL=168h # User token: 7 days max
|
||||
|
||||
# Server pod lifecycle settings
|
||||
JUPYTERHUB_CULL_MAX_AGE=604800 # Max pod age in seconds (7 days = 604800s)
|
||||
# Should be <= NOTEBOOK_VAULT_TOKEN_MAX_TTL
|
||||
|
||||
# Logging
|
||||
JUPYTER_BUUNSTACK_LOG_LEVEL=warning # Options: debug, info, warning, error
|
||||
```
|
||||
|
||||
### Advanced Configuration
|
||||
|
||||
Customize JupyterHub behavior by editing `jupyterhub-values.gomplate.yaml` template before installation.
|
||||
|
||||
## Custom Container Images
|
||||
|
||||
JupyterHub uses custom container images with pre-installed data science tools and integrations:
|
||||
@@ -88,3 +509,156 @@ GPU-enabled notebook image based on `jupyter/pytorch-notebook:cuda12`:
|
||||
[📖 See Image Documentation](./images/datastack-cuda-notebook/README.md)
|
||||
|
||||
Both images are based on the official [Jupyter Docker Stacks](https://github.com/jupyter/docker-stacks) and include all standard data science libraries (NumPy, pandas, scikit-learn, matplotlib, etc.).
|
||||
|
||||
## Management
|
||||
|
||||
### Uninstall
|
||||
|
||||
```bash
|
||||
just jupyterhub::uninstall
|
||||
```
|
||||
|
||||
This removes:
|
||||
|
||||
- JupyterHub deployment
|
||||
- User pods
|
||||
- PVCs
|
||||
- ExternalSecret
|
||||
|
||||
### Update
|
||||
|
||||
Upgrade to newer versions:
|
||||
|
||||
```bash
|
||||
# Update image tag in .env.local
|
||||
export JUPYTER_PYTHON_KERNEL_TAG=python-3.12-29
|
||||
|
||||
# Rebuild and push images
|
||||
just jupyterhub::build-kernel-images
|
||||
just jupyterhub::push-kernel-images
|
||||
|
||||
# Upgrade JupyterHub deployment
|
||||
just jupyterhub::install
|
||||
```
|
||||
|
||||
### Manual Token Refresh
|
||||
|
||||
If needed, manually refresh the admin token:
|
||||
|
||||
```bash
|
||||
# Create new renewable token
|
||||
just jupyterhub::create-jupyterhub-vault-token
|
||||
|
||||
# Restart JupyterHub to pick up new token
|
||||
kubectl rollout restart deployment/hub -n jupyter
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Image Pull Issues
|
||||
|
||||
Buun-stack images are large and may timeout:
|
||||
|
||||
```bash
|
||||
# Check pod status
|
||||
kubectl get pods -n jupyter
|
||||
|
||||
# Check image pull progress
|
||||
kubectl describe pod <pod-name> -n jupyter
|
||||
|
||||
# Increase timeout if needed
|
||||
helm upgrade jupyterhub jupyterhub/jupyterhub --timeout=30m -f jupyterhub-values.yaml
|
||||
```
|
||||
|
||||
### Vault Integration Issues
|
||||
|
||||
Check token and authentication:
|
||||
|
||||
```bash
|
||||
# Check ExternalSecret status
|
||||
kubectl get externalsecret -n jupyter jupyterhub-vault-token
|
||||
|
||||
# Check if Secret was created
|
||||
kubectl get secret -n jupyter jupyterhub-vault-token
|
||||
|
||||
# Check token renewal logs
|
||||
kubectl logs -n jupyter -l app.kubernetes.io/component=hub -c vault-token-renewer
|
||||
|
||||
# In a notebook, verify environment
|
||||
%env NOTEBOOK_VAULT_TOKEN
|
||||
```
|
||||
|
||||
Common issues:
|
||||
|
||||
1. **"child policies must be subset of parent"**: Admin policy needs `sudo` permission for orphan tokens
|
||||
2. **Token not found**: Check ExternalSecret and ClusterSecretStore configuration
|
||||
3. **Permission denied**: Verify `jupyterhub-admin` policy has all required permissions
|
||||
|
||||
### Authentication Issues
|
||||
|
||||
Verify Keycloak client configuration:
|
||||
|
||||
```bash
|
||||
# Check client exists
|
||||
just keycloak::get-client buunstack jupyterhub
|
||||
|
||||
# Check redirect URIs
|
||||
just keycloak::update-client buunstack jupyterhub \
|
||||
"https://your-jupyter-host/hub/oauth_callback"
|
||||
```
|
||||
|
||||
## Technical Implementation Details
|
||||
|
||||
### Helm Chart Version
|
||||
|
||||
JupyterHub uses the official Zero to JupyterHub (Z2JH) Helm chart:
|
||||
|
||||
- Chart: `jupyterhub/jupyterhub`
|
||||
- Version: `4.2.0` (configurable via `JUPYTERHUB_CHART_VERSION`)
|
||||
- Documentation: https://z2jh.jupyter.org/
|
||||
|
||||
### Token System Architecture
|
||||
|
||||
The system uses a three-tier token approach:
|
||||
|
||||
1. **Renewable Admin Token**:
|
||||
- Created with `explicit-max-ttl=0` (unlimited Max TTL)
|
||||
- Renewed automatically at TTL/2 intervals (minimum 30 seconds)
|
||||
- Stored in Vault and fetched via ExternalSecret
|
||||
2. **Orphan User Tokens**:
|
||||
- Created with `create_orphan()` API call
|
||||
- Not limited by parent token policies
|
||||
- Individual TTL and Max TTL settings
|
||||
3. **Token Renewal Script**:
|
||||
- Runs as sidecar container
|
||||
- Reads token from ExternalSecret mount
|
||||
- Handles renewal and re-retrieval on failure
|
||||
|
||||
### Key Files
|
||||
|
||||
- `jupyterhub-admin-policy.hcl`: Vault policy with admin permissions
|
||||
- `user_policy.hcl`: Template for user-specific policies
|
||||
- `vault-token-renewer.sh`: Token renewal script
|
||||
- `jupyterhub-vault-token-external-secret.gomplate.yaml`: ExternalSecret configuration
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
- **Image Size**: Buun-stack images are ~13GB, plan storage accordingly
|
||||
- **Pull Time**: Initial pulls take 5-15 minutes depending on network
|
||||
- **Resource Usage**: Data science workloads require adequate CPU/memory
|
||||
- **Token Renewal**: Minimal overhead (renewal at TTL/2 intervals)
|
||||
|
||||
For production deployments, consider:
|
||||
|
||||
- Pre-pulling images to all nodes
|
||||
- Using faster storage backends
|
||||
- Configuring resource limits per user
|
||||
- Setting up monitoring and alerts
|
||||
|
||||
## Known Limitations
|
||||
|
||||
1. **Annual Token Recreation**: While tokens have unlimited Max TTL, best practice suggests recreating them annually
|
||||
2. **Token Expiry and Pod Lifecycle**: User tokens have a TTL of 1 day (`NOTEBOOK_VAULT_TOKEN_TTL=24h`) and maximum TTL of 7 days (`NOTEBOOK_VAULT_TOKEN_MAX_TTL=168h`). Daily usage extends the token for another day, allowing up to 7 days of continuous use. Server pods are automatically restarted after 7 days (`JUPYTERHUB_CULL_MAX_AGE=604800s`) to refresh tokens.
|
||||
3. **Cull Settings**: Server idle timeout is set to 2 hours by default. Adjust `cull.timeout` and `cull.every` in the Helm values for different requirements
|
||||
4. **NFS Storage**: When using NFS storage, ensure proper permissions are set on the NFS server. The default `JUPYTER_FSGID` is 100
|
||||
5. **ExternalSecret Dependency**: Requires External Secrets Operator to be installed and configured
|
||||
|
||||
@@ -26,7 +26,7 @@ Create `.env.claude` with Trino connection settings:
|
||||
|
||||
```bash
|
||||
# Trino Connection (Password Authentication)
|
||||
TRINO_HOST=trino.buun.dev
|
||||
TRINO_HOST=trino.yourdomain.com
|
||||
TRINO_PORT=443
|
||||
TRINO_SCHEME=https
|
||||
TRINO_SSL=true
|
||||
@@ -75,7 +75,7 @@ Create `~/.env.claude` in your home directory with 1Password references:
|
||||
|
||||
```bash
|
||||
# Trino Connection (Password Authentication)
|
||||
TRINO_HOST=trino.buun.dev
|
||||
TRINO_HOST=trino.yourdomain.com
|
||||
TRINO_PORT=443
|
||||
TRINO_SCHEME=https
|
||||
TRINO_SSL=true
|
||||
|
||||
@@ -392,7 +392,7 @@ cli user="":
|
||||
TRINO_HOST="${TRINO_HOST}"
|
||||
while [ -z "${TRINO_HOST}" ]; do
|
||||
TRINO_HOST=$(gum input --prompt="Trino host (FQDN): " --width=100 \
|
||||
--placeholder="e.g., trino.buun.dev")
|
||||
--placeholder="e.g., trino.yourdomain.com")
|
||||
done
|
||||
TRINO_USER="{{ user }}"
|
||||
if [ -z "${TRINO_USER}" ]; then
|
||||
|
||||
Reference in New Issue
Block a user