feat(jupyterhub): add JupyterHub

This commit is contained in:
Masaki Yatsu
2025-08-29 17:12:31 +09:00
parent 09ffbc42e2
commit 00009ab192
17 changed files with 976 additions and 0 deletions

1
jupyterhub/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
jupyterhub-values.yaml

View File

@@ -0,0 +1 @@
README.md

View File

@@ -0,0 +1,159 @@
# Merge pyspark-notebook into pytorch-notebook:cuda12-python-3.12
# https://github.com/jupyter/docker-stacks/tree/main/images/pytorch-notebook
# https://github.com/jupyter/docker-stacks/tree/main/images/pyspark-notebook
# https://github.com/jupyter/docker-stacks/blob/main/images/pyspark-notebook/setup_spark.py
FROM quay.io/jupyter/pytorch-notebook:x86_64-cuda12-python-3.12.10
# Fix: https://github.com/hadolint/hadolint/wiki/DL4006
# Fix: https://github.com/koalaman/shellcheck/wiki/SC3014
SHELL ["/bin/bash", "-o", "pipefail", "-c"]
USER root
# Spark dependencies
# Default values can be overridden at build time
# (ARGS are in lowercase to distinguish them from ENV)
ARG openjdk_version="17"
RUN apt-get update --yes && \
apt-get install --yes --no-install-recommends \
bash jq \
"openjdk-${openjdk_version}-jre-headless" \
ca-certificates-java && \
apt-get clean && rm -rf /var/lib/apt/lists/*
# If spark_version is not set, latest Spark will be installed
ARG spark_version
ARG hadoop_version="3"
# If scala_version is not set, Spark without Scala will be installed
ARG scala_version
# URL to use for Spark downloads
# You need to use https://archive.apache.org/dist/spark/ website if you want to download old Spark versions
# But it seems to be slower, that's why we use the recommended site for download
ARG spark_download_url="https://dlcdn.apache.org/spark/"
ENV SPARK_HOME=/usr/local/spark
ENV SPARK_OPTS="--driver-java-options=-Xms1024M --driver-java-options=-Xmx4096M --driver-java-options=-Dlog4j.logLevel=info"
ENV JAVA_HOME="/usr/lib/jvm/java-17-openjdk-amd64"
ENV PATH="${PATH}:${SPARK_HOME}/bin:${JAVA_HOME}/bin"
COPY setup_spark.py /opt/setup-scripts/
# Setup Spark
RUN /opt/setup-scripts/setup_spark.py \
--spark-version="${spark_version}" \
--hadoop-version="${hadoop_version}" \
--scala-version="${scala_version}" \
--spark-download-url="${spark_download_url}"
# Configure IPython system-wide
COPY ipython_kernel_config.py "/etc/ipython/"
RUN fix-permissions "/etc/ipython/"
USER ${NB_UID}
# Remove torch to fix `critical libmamba filesystem error` on executing `memba install`
RUN pip uninstall -y \
'torch' \
'torchaudio' \
'torchvision'
# Install pyarrow
# NOTE: It's important to ensure compatibility between Pandas versions.
# The pandas version in this Dockerfile should match the version
# on which the Pandas API for Spark is built.
# To find the right version:
# 1. Check out the Spark branch you are on: <https://github.com/apache/spark>
# 2. Find the pandas version in the file `dev/infra/Dockerfile`.
RUN mamba install --yes \
'aif360' \
'airflow' \
'chromadb' \
'dalex' \
'dbt' \
'dlt' \
'duckdb' \
'faiss' \
'gitpython' \
'grpcio-status' \
'grpcio' \
'keras' \
'langchain' \
'langchain-ai21' \
'langchain-anthropic' \
'langchain-aws' \
'langchain-azure-dynamic-sessions' \
'langchain-chroma' \
'langchain-community' \
'langchain-experimental' \
'langchain-fireworks' \
'langchain-google-genai' \
'langchain-groq' \
'langchain-mistralai' \
'langchain-mongodb' \
'langchain-nomic' \
'langchain-openai' \
'langchain-prompty' \
'langchain-qdrant' \
'langchain-robocorp' \
'langchain-text-splitters' \
'langchain-together' \
'langchain-voyageai' \
'langgraph' \
'langgraph-checkpoint' \
'langgraph-sdk' \
'langsmith' \
'litellm' \
'nest-asyncio' \
'openai' \
'openai-agents' \
'pandas=2.2.2' \
'pandas-profiling' \
'pillow' \
'polars' \
'pyarrow' \
'qdrant-client' \
'rapidfuzz' \
'tensorflow' \
'transformers' \
'unstructured' \
&& \
mamba clean --all -f -y && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
# RUN pip install pyspark[connect,ml,mllib,pandas-on-spark,sql]==4.0.0.dev2
# RUN pip install pyspark[connect,ml,mllib,pandas-on-spark,sql]==3.5.4
RUN pip install \
agno \
fastembed \
feature-engine \
jupyter-ai \
jupyter-ai-magics[all] \
kreuzberg \
langchain-huggingface \
langchain-perplexity \
langfuse \
pydantic-ai \
ragas \
smolagents \
tavily-python \
tweet-preprocessor
# Install PyTorch with pip (https://pytorch.org/get-started/locally/)
# langchain-openai must be updated to avoid pydantic v2 error
# https://github.com/run-llama/llama_index/issues/16540https://github.com/run-llama/llama_index/issues/16540
# hadolint ignore=DL3013
RUN pip install --no-cache-dir --extra-index-url=https://pypi.nvidia.com --index-url 'https://download.pytorch.org/whl/cu124' \
'torch' \
'torchaudio' \
'torchvision' && \
pip install --upgrade langchain-openai && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
WORKDIR "${HOME}"
EXPOSE 4040

View File

@@ -0,0 +1,5 @@
# Jupyter Notebook Image
Custom Jupyter notebook kernel image derived from the official one:
[jupyter/docker-stacks: Ready-to-run Docker images containing Jupyter applications](https://github.com/jupyter/docker-stacks)

View File

@@ -0,0 +1,13 @@
# Configuration file for ipython-kernel.
# See <https://ipython.readthedocs.io/en/stable/config/options/kernel.html>
# With IPython >= 6.0.0, all outputs to stdout/stderr are captured.
# It is the case for subprocesses and output of compiled libraries like Spark.
# Those logs now both head to notebook logs and in notebooks outputs.
# Logs are particularly verbose with Spark, that is why we turn them off through this flag.
# <https://github.com/jupyter/docker-stacks/issues/1423>
# Attempt to capture and forward low-level output, e.g. produced by Extension libraries.
# Default: True
# type:ignore
c.IPKernelApp.capture_fd_output = False # noqa: F821

View File

@@ -0,0 +1,131 @@
#!/usr/bin/env python3
# Copyright (c) Jupyter Development Team.
# Distributed under the terms of the Modified BSD License.
# Requirements:
# - Run as the root user
# - Required env variable: SPARK_HOME
import argparse
import logging
import os
import subprocess
from pathlib import Path
import requests
from bs4 import BeautifulSoup
LOGGER = logging.getLogger(__name__)
def get_all_refs(url: str) -> list[str]:
"""
Get all the references for a given webpage
"""
resp = requests.get(url)
soup = BeautifulSoup(resp.text, "html.parser")
return [a["href"] for a in soup.find_all("a", href=True)]
def get_latest_spark_version() -> str:
"""
Returns the last version of Spark using spark archive
"""
LOGGER.info("Downloading Spark versions information")
all_refs = get_all_refs("https://archive.apache.org/dist/spark/")
versions = [
ref.removeprefix("spark-").removesuffix("/")
for ref in all_refs
if ref.startswith("spark-") and "incubating" not in ref
]
# Compare versions semantically
def version_array(ver: str) -> tuple[int, int, int, str]:
# 3.5.3 -> [3, 5, 3, ""]
# 4.0.0-preview2 -> [4, 0, 0, "preview2"]
arr = ver.split(".")
assert len(arr) == 3, arr
major, minor = int(arr[0]), int(arr[1])
patch, _, preview = arr[2].partition("-")
return (major, minor, int(patch), preview)
latest_version = max(versions, key=lambda ver: version_array(ver))
LOGGER.info(f"Latest version: {latest_version}")
return latest_version
def download_spark(
spark_version: str,
hadoop_version: str,
scala_version: str,
spark_download_url: Path,
) -> str:
"""
Downloads and unpacks spark
The resulting spark directory name is returned
"""
LOGGER.info("Downloading and unpacking Spark")
spark_dir_name = f"spark-{spark_version}-bin-hadoop{hadoop_version}"
if scala_version:
spark_dir_name += f"-scala{scala_version}"
LOGGER.info(f"Spark directory name: {spark_dir_name}")
spark_url = spark_download_url / f"spark-{spark_version}" / f"{spark_dir_name}.tgz"
tmp_file = Path("/tmp/spark.tar.gz")
subprocess.check_call(
["curl", "--progress-bar", "--location", "--output", tmp_file, spark_url]
)
subprocess.check_call(
[
"tar",
"xzf",
tmp_file,
"-C",
"/usr/local",
"--owner",
"root",
"--group",
"root",
"--no-same-owner",
]
)
tmp_file.unlink()
return spark_dir_name
def configure_spark(spark_dir_name: str, spark_home: Path) -> None:
"""
Creates a ${SPARK_HOME} symlink to a versioned spark directory
Creates a 10spark-config.sh symlink to source PYTHONPATH automatically
"""
LOGGER.info("Configuring Spark")
subprocess.check_call(["ln", "-s", f"/usr/local/{spark_dir_name}", spark_home])
# Add a link in the before_notebook hook in order to source PYTHONPATH automatically
CONFIG_SCRIPT = "/usr/local/bin/before-notebook.d/10spark-config.sh"
subprocess.check_call(
["ln", "-s", spark_home / "sbin/spark-config.sh", CONFIG_SCRIPT]
)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument("--spark-version", required=True)
arg_parser.add_argument("--hadoop-version", required=True)
arg_parser.add_argument("--scala-version", required=True)
arg_parser.add_argument("--spark-download-url", type=Path, required=True)
args = arg_parser.parse_args()
args.spark_version = args.spark_version or get_latest_spark_version()
spark_dir_name = download_spark(
spark_version=args.spark_version,
hadoop_version=args.hadoop_version,
scala_version=args.scala_version,
spark_download_url=args.spark_download_url,
)
configure_spark(
spark_dir_name=spark_dir_name, spark_home=Path(os.environ["SPARK_HOME"])
)

View File

@@ -0,0 +1 @@
README.md

View File

@@ -0,0 +1,158 @@
# Merge pyspark-notebook into pytorch-notebook:python-3.12
# https://github.com/jupyter/docker-stacks/tree/main/images/pytorch-notebook
# https://github.com/jupyter/docker-stacks/tree/main/images/pyspark-notebook
# https://github.com/jupyter/docker-stacks/blob/main/images/pyspark-notebook/setup_spark.py
FROM quay.io/jupyter/pytorch-notebook:python-3.12
# Fix: https://github.com/hadolint/hadolint/wiki/DL4006
# Fix: https://github.com/koalaman/shellcheck/wiki/SC3014
SHELL ["/bin/bash", "-o", "pipefail", "-c"]
USER root
# Spark dependencies
# Default values can be overridden at build time
# (ARGS are in lowercase to distinguish them from ENV)
ARG openjdk_version="17"
RUN apt-get update --yes && \
apt-get install --yes --no-install-recommends \
bash jq \
"openjdk-${openjdk_version}-jre-headless" \
ca-certificates-java && \
apt-get clean && rm -rf /var/lib/apt/lists/*
# If spark_version is not set, latest Spark will be installed
ARG spark_version
ARG hadoop_version="3"
# If scala_version is not set, Spark without Scala will be installed
ARG scala_version
# URL to use for Spark downloads
# You need to use https://archive.apache.org/dist/spark/ website if you want to download old Spark versions
# But it seems to be slower, that's why we use the recommended site for download
ARG spark_download_url="https://dlcdn.apache.org/spark/"
ENV SPARK_HOME=/usr/local/spark
ENV SPARK_OPTS="--driver-java-options=-Xms1024M --driver-java-options=-Xmx4096M --driver-java-options=-Dlog4j.logLevel=info"
ENV JAVA_HOME="/usr/lib/jvm/java-17-openjdk-amd64"
ENV PATH="${PATH}:${SPARK_HOME}/bin:${JAVA_HOME}/bin"
COPY setup_spark.py /opt/setup-scripts/
# Setup Spark
RUN /opt/setup-scripts/setup_spark.py \
--spark-version="${spark_version}" \
--hadoop-version="${hadoop_version}" \
--scala-version="${scala_version}" \
--spark-download-url="${spark_download_url}"
# Configure IPython system-wide
COPY ipython_kernel_config.py "/etc/ipython/"
RUN fix-permissions "/etc/ipython/"
USER ${NB_UID}
# Remove torch to fix `critical libmamba filesystem error` on executing `memba install`
RUN pip uninstall -y \
'torch' \
'torchaudio' \
'torchvision'
# Install pyarrow
# NOTE: It's important to ensure compatibility between Pandas versions.
# The pandas version in this Dockerfile should match the version
# on which the Pandas API for Spark is built.
# To find the right version:
# 1. Check out the Spark branch you are on: <https://github.com/apache/spark>
# 2. Find the pandas version in the file `dev/infra/Dockerfile`.
RUN mamba install --yes \
'aif360' \
'airflow' \
'chromadb' \
'dalex' \
'dbt' \
'dlt' \
'duckdb' \
'faiss' \
'gitpython' \
'grpcio-status' \
'grpcio' \
'keras' \
'langchain' \
'langchain-ai21' \
'langchain-anthropic' \
'langchain-aws' \
'langchain-azure-dynamic-sessions' \
'langchain-chroma' \
'langchain-community' \
'langchain-experimental' \
'langchain-fireworks' \
'langchain-google-genai' \
'langchain-groq' \
'langchain-mistralai' \
'langchain-mongodb' \
'langchain-nomic' \
'langchain-openai' \
'langchain-prompty' \
'langchain-qdrant' \
'langchain-robocorp' \
'langchain-text-splitters' \
'langchain-together' \
'langchain-voyageai' \
'langgraph' \
'langgraph-checkpoint' \
'langgraph-sdk' \
'langsmith' \
'litellm' \
'nest-asyncio' \
'openai' \
'openai-agents' \
'pandas=2.2.2' \
'pandas-profiling' \
'pillow' \
'polars' \
'pyarrow' \
'qdrant-client' \
'rapidfuzz' \
'tensorflow' \
'transformers' \
'unstructured' \
&& \
mamba clean --all -f -y && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
# RUN pip install pyspark[connect,ml,mllib,pandas-on-spark,sql]==4.0.0.dev2
# RUN pip install pyspark[connect,ml,mllib,pandas-on-spark,sql]==3.5.4
RUN pip install \
agno \
fastembed \
feature-engine \
jupyter-ai \
jupyter-ai-magics[all] \
kreuzberg \
langfuse \
langchain-huggingface \
langchain-perplexity \
pydantic-ai \
ragas \
smolagents \
tavily-python \
tweet-preprocessor
# Install PyTorch with pip (https://pytorch.org/get-started/locally/)
# langchain-openai must be updated to avoid pydantic v2 error
# https://github.com/run-llama/llama_index/issues/16540https://github.com/run-llama/llama_index/issues/16540
# hadolint ignore=DL3013
RUN pip install --no-cache-dir --index-url 'https://download.pytorch.org/whl/cpu' \
'torch' \
'torchaudio' \
'torchvision' && \
pip install --upgrade langchain-openai && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
WORKDIR "${HOME}"
EXPOSE 4040

View File

@@ -0,0 +1,5 @@
# Jupyter Notebook Image
Custom Jupyter notebook kernel image derived from the official one:
[jupyter/docker-stacks: Ready-to-run Docker images containing Jupyter applications](https://github.com/jupyter/docker-stacks)

View File

@@ -0,0 +1,13 @@
# Configuration file for ipython-kernel.
# See <https://ipython.readthedocs.io/en/stable/config/options/kernel.html>
# With IPython >= 6.0.0, all outputs to stdout/stderr are captured.
# It is the case for subprocesses and output of compiled libraries like Spark.
# Those logs now both head to notebook logs and in notebooks outputs.
# Logs are particularly verbose with Spark, that is why we turn them off through this flag.
# <https://github.com/jupyter/docker-stacks/issues/1423>
# Attempt to capture and forward low-level output, e.g. produced by Extension libraries.
# Default: True
# type:ignore
c.IPKernelApp.capture_fd_output = False # noqa: F821

View File

@@ -0,0 +1,131 @@
#!/usr/bin/env python3
# Copyright (c) Jupyter Development Team.
# Distributed under the terms of the Modified BSD License.
# Requirements:
# - Run as the root user
# - Required env variable: SPARK_HOME
import argparse
import logging
import os
import subprocess
from pathlib import Path
import requests
from bs4 import BeautifulSoup
LOGGER = logging.getLogger(__name__)
def get_all_refs(url: str) -> list[str]:
"""
Get all the references for a given webpage
"""
resp = requests.get(url)
soup = BeautifulSoup(resp.text, "html.parser")
return [a["href"] for a in soup.find_all("a", href=True)]
def get_latest_spark_version() -> str:
"""
Returns the last version of Spark using spark archive
"""
LOGGER.info("Downloading Spark versions information")
all_refs = get_all_refs("https://archive.apache.org/dist/spark/")
versions = [
ref.removeprefix("spark-").removesuffix("/")
for ref in all_refs
if ref.startswith("spark-") and "incubating" not in ref
]
# Compare versions semantically
def version_array(ver: str) -> tuple[int, int, int, str]:
# 3.5.3 -> [3, 5, 3, ""]
# 4.0.0-preview2 -> [4, 0, 0, "preview2"]
arr = ver.split(".")
assert len(arr) == 3, arr
major, minor = int(arr[0]), int(arr[1])
patch, _, preview = arr[2].partition("-")
return (major, minor, int(patch), preview)
latest_version = max(versions, key=lambda ver: version_array(ver))
LOGGER.info(f"Latest version: {latest_version}")
return latest_version
def download_spark(
spark_version: str,
hadoop_version: str,
scala_version: str,
spark_download_url: Path,
) -> str:
"""
Downloads and unpacks spark
The resulting spark directory name is returned
"""
LOGGER.info("Downloading and unpacking Spark")
spark_dir_name = f"spark-{spark_version}-bin-hadoop{hadoop_version}"
if scala_version:
spark_dir_name += f"-scala{scala_version}"
LOGGER.info(f"Spark directory name: {spark_dir_name}")
spark_url = spark_download_url / f"spark-{spark_version}" / f"{spark_dir_name}.tgz"
tmp_file = Path("/tmp/spark.tar.gz")
subprocess.check_call(
["curl", "--progress-bar", "--location", "--output", tmp_file, spark_url]
)
subprocess.check_call(
[
"tar",
"xzf",
tmp_file,
"-C",
"/usr/local",
"--owner",
"root",
"--group",
"root",
"--no-same-owner",
]
)
tmp_file.unlink()
return spark_dir_name
def configure_spark(spark_dir_name: str, spark_home: Path) -> None:
"""
Creates a ${SPARK_HOME} symlink to a versioned spark directory
Creates a 10spark-config.sh symlink to source PYTHONPATH automatically
"""
LOGGER.info("Configuring Spark")
subprocess.check_call(["ln", "-s", f"/usr/local/{spark_dir_name}", spark_home])
# Add a link in the before_notebook hook in order to source PYTHONPATH automatically
CONFIG_SCRIPT = "/usr/local/bin/before-notebook.d/10spark-config.sh"
subprocess.check_call(
["ln", "-s", spark_home / "sbin/spark-config.sh", CONFIG_SCRIPT]
)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument("--spark-version", required=True)
arg_parser.add_argument("--hadoop-version", required=True)
arg_parser.add_argument("--scala-version", required=True)
arg_parser.add_argument("--spark-download-url", type=Path, required=True)
args = arg_parser.parse_args()
args.spark_version = args.spark_version or get_latest_spark_version()
spark_dir_name = download_spark(
spark_version=args.spark_version,
hadoop_version=args.hadoop_version,
scala_version=args.scala_version,
spark_download_url=args.spark_download_url,
)
configure_spark(
spark_dir_name=spark_dir_name, spark_home=Path(os.environ["SPARK_HOME"])
)

View File

@@ -0,0 +1,155 @@
hub:
config:
JupyterHub:
authenticator_class: generic-oauth
admin_access: false
Authenticator:
enable_auth_state: true
allow_all: true # allow all Keycloak users
GenericOAuthenticator:
client_id: {{ .Env.JUPYTERHUB_OIDC_CLIENT_ID }}
oauth_callback_url: "https://{{ .Env.JUPYTERHUB_HOST }}/hub/oauth_callback"
authorize_url: "https://{{ .Env.KEYCLOAK_HOST }}/realms/{{ .Env.KEYCLOAK_REALM }}/protocol/openid-connect/auth"
token_url: "https://{{ .Env.KEYCLOAK_HOST }}/realms/{{ .Env.KEYCLOAK_REALM }}/protocol/openid-connect/token"
userdata_url: "https://{{ .Env.KEYCLOAK_HOST }}/realms/{{ .Env.KEYCLOAK_REALM }}/protocol/openid-connect/userinfo"
login_service: keycloak
# username_claim: email
username_claim: preferred_username
OAuthenticator:
scope:
- openid
- profile
- email
# db:
# pvc:
# storageClassName: longhorn
podSecurityContext:
fsGroup: {{ .Env.JUPYTER_FSGID }}
singleuser:
storage:
{{ if env.Getenv "PVC_NAME" -}}
type: static
static:
pvcName: {{ .Env.PVC_NAME }}
{{ else -}}
type: dynamic
dynamic:
storageClass: longhorn
storageAccessModes:
- ReadWriteOnce
{{ end -}}
capacity: 10Gi
networkPolicy:
egress:
- to:
- namespaceSelector:
matchLabels:
kubernetes.io/metadata.name: chroma
ports:
- port: 8000
protocol: TCP
- to:
- namespaceSelector:
matchLabels:
kubernetes.io/metadata.name: qdrant
ports:
- port: 6333
protocol: TCP
- port: 6334
protocol: TCP
- port: 6335
protocol: TCP
- to:
- namespaceSelector:
matchLabels:
kubernetes.io/metadata.name: litellm
ports:
- port: 4000
protocol: TCP
- to:
- ipBlock:
cidr: 0.0.0.0/0
ports:
- port: 443
protocol: TCP
domains:
- '*.shds.dev'
image:
pullPolicy: IfNotPresent
profileList:
# https://quay.io/repository/jupyter/pyspark-notebook
{{- if eq .Env.JUPYTER_PROFILE_MINIMAL_ENABLED "true" }}
- display_name: "Minimal Jupyter Notebook Stack"
description: "Minimal Jupyter Notebook Stack"
kubespawner_override:
image: quay.io/jupyter/minimal-notebook
{{- end }}
{{ if eq .Env.JUPYTER_PROFILE_BASE_ENABLED "true" }}
- display_name: "Base Jupyter Notebook Stack"
description: "Base Jupyter Notebook Stack"
kubespawner_override:
image: quay.io/jupyter/base-notebook
{{- end }}
{{- if eq .Env.JUPYTER_PROFILE_DATASCIENCE_ENABLED "true" }}
- display_name: "Jupyter Notebook Data Science Stack"
description: "Jupyter Notebook Data Science Stack"
kubespawner_override:
image: quay.io/jupyter/datascience-notebook
{{- end }}
{{- if eq .Env.JUPYTER_PROFILE_PYSPARK_ENABLED "true" }}
- display_name: "Jupyter Notebook Python, Spark Stack"
description: "Jupyter Notebook Python, Spark Stack"
kubespawner_override:
image: quay.io/jupyter/pyspark-notebook
{{- end }}
{{- if eq .Env.JUPYTER_PROFILE_PYTORCH_ENABLED "true" }}
- display_name: "Jupyter Notebook PyTorch Deep Learning Stack"
description: "Jupyter Notebook PyTorch Deep Learning Stack"
kubespawner_override:
image: quay.io/jupyter/pytorch-notebook
{{- end }}
{{- if eq .Env.JUPYTER_PROFILE_TENSORFLOW_ENABLED "true" }}
- display_name: "Jupyter Notebook TensorFlow Deep Learning Stack"
description: "Jupyter Notebook TensorFlow Deep Learning Stack"
kubespawner_override:
image: quay.io/jupyter/tensorflow-notebook
{{- end }}
{{- if eq .Env.JUPYTER_PROFILE_BUUN_STACK_ENABLED "true" }}
- display_name: "Buun-stack"
description: "Jupyter Notebook with buun-stack"
kubespawner_override:
image: "{{ .Env.IMAGE_REGISTRY }}/{{ .Env.KERNEL_IMAGE_BUUN_STACK_REPOSITORY }}:{{ .Env.JUPYTER_PYTHON_KERNEL_TAG }}"
{{- end }}
{{- if eq .Env.JUPYTER_PROFILE_BUUN_STACK_CUDA_ENABLED "true" }}
- display_name: "Buun-stack with CUDA"
description: "Jupyter Notebook with buun-stack and CUDA support"
kubespawner_override:
image: "{{ .Env.IMAGE_REGISTRY }}/{{ .Env.KERNEL_IMAGE_BUUN_STACK_CUDA_REPOSITORY }}:{{ .Env.JUPYTER_PYTHON_KERNEL_TAG }}"
# resources:
# requests:
# nvidia.com/gpu: "1"
{{- end }}
imagePullSecrets:
- name: regcred
ingress:
enabled: true
annotations:
kubernetes.io/ingress.class: traefik
traefik.ingress.kubernetes.io/router.entrypoints: websecure
ingressClassName: traefik
hosts:
- {{ .Env.JUPYTERHUB_HOST }}
pathType: Prefix
tls:
- hosts:
- {{ .Env.JUPYTERHUB_HOST }}

150
jupyterhub/justfile Normal file
View File

@@ -0,0 +1,150 @@
set fallback := true
export JUPYTERHUB_NAMESPACE := env("JUPYTERHUB_NAMESPACE", "jupyter")
export JUPYTERHUB_CHART_VERSION := env("JUPYTERHUB_CHART_VERSION", "4.2.0")
export JUPYTERHUB_OIDC_CLIENT_ID := env("JUPYTERHUB_OIDC_CLIENT_ID", "jupyterhub")
export JUPYTERHUB_ENABLE_NFS_PV := env("JUPYTERHUB_ENABLE_NFS_PV", "")
export JUPYTER_PYTHON_KERNEL_TAG := env("JUPYTER_PYTHON_KERNEL_TAG", "python-3.12-1")
export KERNEL_IMAGE_BUUN_STACK_REPOSITORY := env("KERNEL_IMAGE_BUUN_STACK_REPOSITORY", "buun-stack-notebook")
export KERNEL_IMAGE_BUUN_STACK_CUDA_REPOSITORY := env("KERNEL_IMAGE_BUUN_STACK_CUDA_REPOSITORY", "buun-stack-cuda-notebook")
export JUPYTER_PROFILE_MINIMAL_ENABLED := env("JUPYTER_PROFILE_MINIMAL_ENABLED", "false")
export JUPYTER_PROFILE_BASE_ENABLED := env("JUPYTER_PROFILE_BASE_ENABLED", "false")
export JUPYTER_PROFILE_DATASCIENCE_ENABLED := env("JUPYTER_PROFILE_DATASCIENCE_ENABLED", "true")
export JUPYTER_PROFILE_PYSPARK_ENABLED := env("JUPYTER_PROFILE_PYSPARK_ENABLED", "false")
export JUPYTER_PROFILE_PYTORCH_ENABLED := env("JUPYTER_PROFILE_PYTORCH_ENABLED", "false")
export JUPYTER_PROFILE_TENSORFLOW_ENABLED := env("JUPYTER_PROFILE_TENSORFLOW_ENABLED", "false")
export JUPYTER_PROFILE_BUUN_STACK_ENABLED := env("JUPYTER_PROFILE_BUUN_STACK_ENABLED", "false")
export JUPYTER_PROFILE_BUUN_STACK_CUDA_ENABLED := env("JUPYTER_PROFILE_BUUN_STACK_CUDA_ENABLED", "false")
export IMAGE_REGISTRY := env("IMAGE_REGISTRY", "localhost:30500")
export KEYCLOAK_REALM := env("KEYCLOAK_REALM", "buunstack")
export LONGHORN_NAMESPACE := env("LONGHORN_NAMESPACE", "longhorn")
[private]
default:
@just --list --unsorted --list-submodules
# Add Helm repository
add-helm-repo:
helm repo add jupyterhub https://jupyterhub.github.io/helm-chart
helm repo update
# Remove Helm repository
remove-helm-repo:
helm repo remove jupyterhub
# Create JupyterHub namespace
create-namespace:
kubectl get namespace ${JUPYTERHUB_NAMESPACE} &>/dev/null || \
kubectl create namespace ${JUPYTERHUB_NAMESPACE}
# Delete JupyterHub namespace
delete-namespace:
kubectl delete namespace ${JUPYTERHUB_NAMESPACE} --ignore-not-found
# Install JupyterHub
install:
#!/bin/bash
set -euo pipefail
export JUPYTERHUB_HOST=${JUPYTERHUB_HOST:-}
while [ -z "${JUPYTERHUB_HOST}" ]; do
JUPYTERHUB_HOST=$(
gum input --prompt="JupyterHub host (FQDN): " --width=100 \
--placeholder="e.g., jupyter.example.com"
)
done
just create-namespace
# just k8s::copy-regcred ${JUPYTERHUB_NAMESPACE}
just keycloak::create-client ${KEYCLOAK_REALM} ${JUPYTERHUB_OIDC_CLIENT_ID} \
"https://${JUPYTERHUB_HOST}/hub/oauth_callback"
# just vault::create-jupyter-role
just add-helm-repo
export JUPYTERHUB_OIDC_CLIENT_ID=${JUPYTERHUB_OIDC_CLIENT_ID}
export KEYCLOAK_REALM=${KEYCLOAK_REALM}
export JUPYTER_PYTHON_KERNEL_TAG=${JUPYTER_PYTHON_KERNEL_TAG}
export JUPYTER_FSGID=${JUPYTER_FSGID:-100}
export PVC_NAME=""
if [ -z "${JUPYTERHUB_ENABLE_NFS_PV}" ]; then
if gum confirm "Are you going to use NFS PV?"; then
JUPYTERHUB_ENABLE_NFS_PV=true
else
JUPYTERHUB_ENABLE_NFS_PV=false
fi
fi
if [ "${JUPYTERHUB_ENABLE_NFS_PV}" = "true" ]; then
if ! helm status longhorn -n ${LONGHORN_NAMESPACE} &>/dev/null; then
echo "Longhorn is not installed. Please install Longhorn first." >&2
exit 1
fi
export JUPYTER_NFS_IP=${JUPYTER_NFS_IP:-}
while [ -z "${JUPYTER_NFS_IP}" ]; do
JUPYTER_NFS_IP=$(
gum input --prompt="NFS server IP address: " --width=100 \
--placeholder="e.g., 192.168.10.1"
)
done
export JUPYTER_NFS_PATH=${JUPYTER_NFS_PATH:-}
while [ -z "${JUPYTER_NFS_PATH}" ]; do
JUPYTER_NFS_PATH=$(
gum input --prompt="NFS server export path: " --width=100 \
--placeholder="e.g., /volume1/drive1/jupyter"
)
done
PVC_NAME=jupyter-nfs-pvc
if ! kubectl get pv jupyter-nfs-pv &>/dev/null; then
gomplate -f nfs-pv.gomplate.yaml | kubectl apply -f -
fi
kubectl apply -n ${JUPYTERHUB_NAMESPACE} -f nfs-pvc.yaml
fi
# https://z2jh.jupyter.org/en/stable/
gomplate -f jupyterhub-values.gomplate.yaml -o jupyterhub-values.yaml
helm upgrade --cleanup-on-fail --install jupyterhub jupyterhub/jupyterhub \
--version ${JUPYTERHUB_CHART_VERSION} -n ${JUPYTERHUB_NAMESPACE} \
--timeout=20m -f jupyterhub-values.yaml
# wait deployments manually because `helm upgrade --wait` does not work for JupyterHub
just k8s::wait-deployments-ready ${JUPYTERHUB_NAMESPACE} hub proxy
# Uninstall JupyterHub
uninstall:
#!/bin/bash
set -euo pipefail
helm uninstall jupyterhub -n ${JUPYTERHUB_NAMESPACE} --wait --ignore-not-found
kubectl delete pods -n ${JUPYTERHUB_NAMESPACE} -l app.kubernetes.io/component=singleuser-server
kubectl delete -n ${JUPYTERHUB_NAMESPACE} pvc jupyter-nfs-pvc --ignore-not-found
if kubectl get pv jupyter-nfs-pv &>/dev/null; then
kubectl patch pv jupyter-nfs-pv -p '{"spec":{"claimRef":null}}'
fi
# Delete JupyterHub PV
delete-pv:
#!/bin/bash
set -euo pipefail
if kubectl get pv jupyter-nfs-pv &>/dev/null; then
kubectl patch pv jupyter-nfs-pv -p '{"spec":{"claimRef":null}}'
kubectl delete pv jupyter-nfs-pv
fi
# Build Jupyter notebook kernel images
build-kernel-images:
#!/bin/bash
set -euo pipefail
(
cd ./images/datastack-notebook
docker build -t \
${IMAGE_REGISTRY}/${KERNEL_IMAGE_BUUN_STACK_REPOSITORY}:${JUPYTER_PYTHON_KERNEL_TAG} \
--build-arg spark_version="3.5.4" \
--build-arg spark_download_url="https://archive.apache.org/dist/spark/" \
.
)
(
cd ./images/datastack-cuda-notebook
docker build -t \
${IMAGE_REGISTRY}/${KERNEL_IMAGE_BUUN_STACK_CUDA_REPOSITORY}:${JUPYTER_PYTHON_KERNEL_TAG} \
--build-arg spark_version="3.5.4" \
--build-arg spark_download_url="https://archive.apache.org/dist/spark/" \
.
)
# Push Jupyter notebook kernel images
push-kernel-images: build-kernel-images
docker push ${IMAGE_REGISTRY}/${KERNEL_IMAGE_BUUN_STACK_REPOSITORY}:${JUPYTER_PYTHON_KERNEL_TAG}
docker push ${IMAGE_REGISTRY}/${KERNEL_IMAGE_BUUN_STACK_CUDA_REPOSITORY}:${JUPYTER_PYTHON_KERNEL_TAG}

View File

@@ -0,0 +1,15 @@
apiVersion: v1
kind: PersistentVolume
metadata:
name: jupyter-nfs-pv
spec:
capacity:
storage: 10Gi
accessModes:
- ReadWriteOnce
persistentVolumeReclaimPolicy: Retain
storageClassName: longhorn
volumeMode: Filesystem
nfs:
server: {{ .Env.JUPYTER_NFS_IP }}
path: {{ .Env.JUPYTER_NFS_PATH }}

11
jupyterhub/nfs-pvc.yaml Normal file
View File

@@ -0,0 +1,11 @@
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: jupyter-nfs-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi
volumeName: jupyter-nfs-pv